Fatigue life prediction considering mean stress effect based on random forests and kernel extreme learning machine

压力(语言学) 随机森林 一般化 计算机科学 超参数 极限学习机 航程(航空) 超参数优化 理论(学习稳定性) 机器学习 人工智能 材料科学 人工神经网络 数学 支持向量机 数学分析 哲学 复合材料 语言学
作者
Lei Gan,Hao Wu,Zheng Zhong
出处
期刊:International Journal of Fatigue [Elsevier]
卷期号:158: 106761-106761 被引量:51
标识
DOI:10.1016/j.ijfatigue.2022.106761
摘要

• Fatigue life mapping in presence of mean stresses is explored based on RF and KELM . • Genetic algorithm and Grid search method are integrated to optimize hyper-parameters. • A rich experimental database is established for model training and evaluation. • The proposed models are demonstrated to be superior to semiempirical models. • The RF- and KELM-based models are favorable for different application scenarios. The mean stress effect plays a vital role in fatigue life analysis, affecting both macro-mechanical response and micro-crack evolution of materials. Even though semiempirical models are widely used in practice because of their simplicity, the mean stress effect for a broad range of materials and loading conditions may not be uniformly reflected due to the disorganized description of fatigue damage. To overcome such deficiency, two machine learning (ML)-based models, as useful alternatives to semiempirical models, are proposed to predict the fatigue life in presence of mean stresses using random forests and kernel extreme learning machine respectively. In the models, the monotonic, cyclic and fatigue properties as well as the cyclic stress–strain responses of materials are employed to map the fatigue life with mean stress effect. Also, hyperparameters are automatically optimized by the genetic algorithm/grid search method to avoid arbitrary procedures. A total of 354 experimental results generated for various materials and mean stress levels are collected to evaluate the prediction accuracy, performance stability and generalization ability of the proposed models. It is shown that these two proposed models, based on different prediction mechanisms, can both exhibit superior prediction performance over semiempirical models, and hold distinct prediction characteristics favorable for different application scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
only发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
小胡加油完成签到 ,获得积分10
2秒前
4秒前
天纵奇才熊完成签到 ,获得积分10
4秒前
4秒前
Singularity举报XIETTING求助涉嫌违规
5秒前
6秒前
ningguizhang完成签到,获得积分10
6秒前
Owen应助侯mm采纳,获得10
8秒前
minisword发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
李健应助舒适皮皮虾采纳,获得10
9秒前
科研r发布了新的文献求助10
9秒前
ran发布了新的文献求助10
12秒前
12秒前
张莹发布了新的文献求助10
13秒前
liu完成签到,获得积分10
14秒前
天真纹完成签到,获得积分10
14秒前
15秒前
16秒前
liu发布了新的文献求助10
16秒前
123发布了新的文献求助10
18秒前
18秒前
奋斗的夏柳完成签到,获得积分10
18秒前
18秒前
19秒前
善学以致用应助科研r采纳,获得10
19秒前
无语完成签到 ,获得积分10
20秒前
岁月如歌完成签到,获得积分10
21秒前
马里奥好难完成签到 ,获得积分10
22秒前
浮生发布了新的文献求助10
23秒前
传奇3应助张莹采纳,获得10
24秒前
欢呼小蚂蚁完成签到,获得积分10
29秒前
御景风发布了新的文献求助20
30秒前
30秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3124628
求助须知:如何正确求助?哪些是违规求助? 2774894
关于积分的说明 7724629
捐赠科研通 2430451
什么是DOI,文献DOI怎么找? 1291102
科研通“疑难数据库(出版商)”最低求助积分说明 622063
版权声明 600323