Emerging roles of long non-coding RNA in depression

萧条(经济学) 表观遗传学 神经科学 生物标志物 长非编码RNA 小RNA 生物信息学 精神科 医学 生物 心理学 核糖核酸 基因 遗传学 宏观经济学 经济
作者
Wenzhi Hao,Qian Chen,Lu Wang,Gabriel Tao,Hua Gan,Lijuan Deng,Junqing Huang,Jiaxu Chen
出处
期刊:Progress in Neuro-psychopharmacology & Biological Psychiatry [Elsevier]
卷期号:115: 110515-110515 被引量:21
标识
DOI:10.1016/j.pnpbp.2022.110515
摘要

Depression is the second most common psychiatric disorder, affecting more than 340 million people of all ages worldwide. However, the mechanisms underlying the development of depression remain unclear, and existing antidepressants may cause clinical dependence and toxic side effects. Recently, emerging evidence from the fields of neuroscience, genetics, and genomics supports the modulatory role of long non-coding RNA (lncRNA) in depression. LncRNAs may mediate the pathogenesis of depression through multiple pathways, including regulating neurotransmitters and neurotrophic factors, affecting synaptic conduction, and regulating the ventriculo-olfactory neurogenic system. In addition, relying on genome-wide association study and molecular biological experiment, the possibility of lncRNA as a potential biomarker for the differential diagnosis of depression and other mental illnesses, including schizophrenia and anxiety disorders, is gradually being revealed. Thus, it is important to explore whether lncRNAs are potential therapeutic targets and diagnostic biomarkers for depression. Here, we summarize the genesis and function of lncRNAs and discuss the aberrant expression and functional roles of lncRNAs in the development, diagnosis, and therapy of depression, as well as the deficiencies and limitations of these studies. Moreover, we established a lncRNA-miRNA-mRNA-pathway-drug network of depression through bioinformatics analysis methods to deepen our understanding of the relationship between lncRNA and depression, promoting the clinical application of epigenetic research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
兴奋电脑完成签到,获得积分10
2秒前
shinysparrow应助wallonce采纳,获得200
2秒前
科研通AI2S应助Eric采纳,获得10
3秒前
7秒前
8秒前
江月年完成签到 ,获得积分10
8秒前
wakeeeeeee发布了新的文献求助10
10秒前
搜集达人应助yinxinyi采纳,获得30
11秒前
小泡芙完成签到 ,获得积分10
12秒前
12秒前
13秒前
读研好难发布了新的文献求助20
15秒前
Lucas应助有灵魅采纳,获得10
15秒前
15秒前
16秒前
勤劳傲晴发布了新的文献求助10
17秒前
18秒前
CC发布了新的文献求助10
18秒前
搜集达人应助从容幼南采纳,获得10
18秒前
21秒前
彭于晏应助默默的青旋采纳,获得30
22秒前
Hey发布了新的文献求助10
22秒前
xiekunwhy完成签到,获得积分10
22秒前
屠龙少女完成签到,获得积分20
23秒前
毛豆应助wallonce采纳,获得10
23秒前
24秒前
24秒前
痴情的靖柔完成签到 ,获得积分10
24秒前
26秒前
z3Q应助笑点低的白莲采纳,获得10
28秒前
屠龙少女发布了新的文献求助10
28秒前
在水一方应助ZSQ采纳,获得10
29秒前
Simone发布了新的文献求助10
30秒前
Xiaoyuan完成签到,获得积分10
30秒前
32秒前
33秒前
散逸层梦游应助青菜采纳,获得30
36秒前
yoo发布了新的文献求助10
36秒前
科研通AI2S应助安详秋采纳,获得10
36秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306289
求助须知:如何正确求助?哪些是违规求助? 2940054
关于积分的说明 8495768
捐赠科研通 2614340
什么是DOI,文献DOI怎么找? 1428119
科研通“疑难数据库(出版商)”最低求助积分说明 663275
邀请新用户注册赠送积分活动 648110