替莫唑胺
体内
胶质瘤
药物输送
卡莫司汀
亚硝基脲
药品
药理学
化学
体外
活性氧
自愈水凝胶
癌症研究
医学
化疗
外科
生物
生物化学
有机化学
生物技术
依托泊苷
作者
Sunhui Chen,Qiujun Qiu,Dongdong Wang,Dejun She,Bo Yin,Guolong Gu,Mei-Hong Chai,Dong Nyoung Heo,Huining He,Jianxin Wang
标识
DOI:10.1016/j.jconrel.2022.07.011
摘要
Local treatment after resection to inhibit glioma recurrence is thought to able to meet the real medical needs. However, the only clinically approved local glioma treatment-wafer containing bis(2-chloroethyl) nitrosourea (BCNU) showed very limited effects. Herein, in order to inhibit tumor recurrence with prolonged and synergistic therapeutic effect of drugs after tumor resection, an in situ dual-sensitive hydrogel drug delivery system loaded with two synergistic chemo-drugs BCNU and temozolomide (TMZ) was developed. The thermosensitive hydrogel was loaded with reactive oxygen species (ROS)-sensitive poly (lactic-co-glycolic) acid nanoparticles (NPs) encapsulating both BCNU and TMZ and also free BCNU and TMZ. The in vitro synergistic effect of BCNU and TMZ and in vivo presence of ROS at the residual tumor site were confirmed. The prepared ROS-sensitive NPs and thermosensitive hydrogel, as well as the long-term release behavior of drugs and NPs, were fully characterized both in vitro and in vivo. After >90% glioblastoma resection, the dual-sensitive hydrogel drug delivery system was injected into the resection cavity. The median survival time of the experimental group reached 65 days which was twice as long as the Resection only group, implying that this in situ drug delivery system effectively inhibited tumor recurrence. Overall, this study provides new ideas and strategies for the inhibition of postoperative glioma recurrence.
科研通智能强力驱动
Strongly Powered by AbleSci AI