节点(物理)
计算机科学
静态随机存取存储器
香料
桥(图论)
嵌入
蒙特卡罗方法
电子线路
半导体工业
计算机工程
电子工程
人工智能
工程类
电气工程
计算机硬件
数学
结构工程
医学
内科学
统计
制造工程
作者
Joydeep Ghosh,Shang Yi Lim,Ferdaus Md. Meftahul,J. Senthilnath,Aaron Thean
标识
DOI:10.1109/edtm53872.2022.9798365
摘要
The modern semiconductor technology node causes several failure analysis challenges of the current industry-standard tools to locate the physical defects. Here we discuss such defects in a 6T-SRAM cell. We combine bridge-defect modeling with SPICE simulations and machine learning technique for detect predictions across a node pair. We employ supervised learning algorithm trained with the measurable electrical attributes of the circuit to predict defect location. Then, we utilize t-distributed stochastic neighbor embedding (t-SNE) technique to visualize the multi-dimensional data and interpret how several defect clusters behave. Our approach promises to improve the failure analysis in integrated circuits, enhancing the cycle of design to product.
科研通智能强力驱动
Strongly Powered by AbleSci AI