An integrated lane change prediction model incorporating traffic context based on trajectory data

弹道 适应性 计算机科学 背景(考古学) 变更检测 流量(计算机网络) 预测建模 交通冲突 机器学习 人工智能 运输工程 交通拥挤 工程类 浮动车数据 古生物学 物理 生物 计算机安全 生态学 天文
作者
Qianqian Xue,Yingying Xing,Jian Lü
出处
期刊:Transportation Research Part C-emerging Technologies [Elsevier BV]
卷期号:141: 103738-103738 被引量:23
标识
DOI:10.1016/j.trc.2022.103738
摘要

Predicting lane change maneuvers is critical for autonomous vehicles and traffic management as lane change may cause conflict in traffic flow. Most existing studies do not consider the effect of traffic context (i.e., traffic level and vehicle type) on lane change maneuvers. Therefore, these models cannot adapt to different traffic environments. This study aims to address this problem and establish an integrated lane change prediction model incorporating traffic context using machine learning algorithms. In addition, lane change decisions and lane change trajectories are both predicted to capture the whole process, which have been less studied. The framework of the proposed model contains two parts: the traffic context classification model, which is used to predict traffic level and vehicle type, and the integrated lane change prediction model, which is used to predict lane change decision with XGBoost and lane change trajectories with LSTM incorporating context information. Instead of considering lane change, we establish trajectory prediction models for left lane change and right lane change, further improving the prediction accuracy. The naturalistic trajectories of the highD dataset are used to train and validate the model. The results show that the proposed model improves the accuracy from 97.02% to 98.20% when predicting lane change decision that incorporate traffic context. In addition, the MSE decreases from 11.21 to 6.62 when predicting trajectories. The proposed models are also validated on NGSIM dataset, proving the adaptability of the model. The proposed model can be applied to different environments to reduce collision risks caused by lane change maneuvers and improve traffic management and driving safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助坚强幼荷采纳,获得10
刚刚
1秒前
ZJCGD完成签到,获得积分10
1秒前
甘蔗侠完成签到,获得积分20
1秒前
@@@发布了新的文献求助10
1秒前
skskysky完成签到,获得积分10
2秒前
2秒前
microtsiu完成签到,获得积分10
2秒前
3秒前
Zero_榊啸号完成签到,获得积分10
3秒前
wanci应助Du采纳,获得10
3秒前
Akim应助李永波采纳,获得10
3秒前
4秒前
4秒前
缓慢易云发布了新的文献求助10
5秒前
5秒前
大个应助万嘉俊采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
阳光火车完成签到 ,获得积分10
6秒前
小小鱼发布了新的文献求助10
6秒前
6秒前
累哥完成签到,获得积分20
6秒前
英俊的铭应助114555采纳,获得10
7秒前
花花公子完成签到,获得积分10
7秒前
cc完成签到,获得积分10
7秒前
Jane完成签到 ,获得积分10
8秒前
彪壮的机器猫完成签到,获得积分10
8秒前
紧张的谷槐完成签到,获得积分10
9秒前
xiaoqi完成签到,获得积分10
9秒前
研友_nvGWwZ发布了新的文献求助20
9秒前
10秒前
马不停蹄发布了新的文献求助10
10秒前
11秒前
11秒前
aappk完成签到,获得积分10
11秒前
kg完成签到,获得积分10
12秒前
汉堡包应助林夏采纳,获得10
12秒前
039Hc发布了新的文献求助10
12秒前
星辰大海应助鲁鲁采纳,获得10
13秒前
Aom完成签到,获得积分10
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986722
求助须知:如何正确求助?哪些是违规求助? 3529207
关于积分的说明 11243810
捐赠科研通 3267638
什么是DOI,文献DOI怎么找? 1803822
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582