Sparse block signal detection and identification for shared cross-trait association analysis

全基因组关联研究 连锁不平衡 遗传关联 遗传学 单核苷酸多态性 计算生物学 生物 基因型 基因
作者
Jianqiao Wang,Wanjie Wang,Hongzhe Li
出处
期刊:The Annals of Applied Statistics [Institute of Mathematical Statistics]
卷期号:16 (2)
标识
DOI:10.1214/21-aoas1523
摘要

Genome-wide association studies (GWAS) have identified thousands of single nucleotide polymorphisms (SNPs) that are associated with complex traits. GWAS data allows us to investigate the shared genetic etiologies among different traits. However, linkage disequilibrium (LD) between the SNPs complicates the detection and identification of shared genetic effects. In this paper we model the LD by dividing the genome into LD blocks and linking the genetic variants within a block to a possible latent causal variant. An eigenvector-projected score statistic that leverages the set of variants in LD and a maxtype test statistic (Max-block) are proposed to detect the existence of cross-trait genetic association. The Max-block is easy to calculate and is shown to control the genome-wide error rate. After the detection a stepwise procedure is proposed to identify the significant blocks that explain the genetic sharing between two traits. Simulation experiments show that Max-block is more powerful than standard approaches in the sparse settings and is robust to different signal strengths or levels of sparsity. The method is applied to study shared cross-trait associations in 10 pediatric autoimmune diseases and identified several regions that explain the genetic sharing between juvenile idiopathic arthritis (JIA) and ulcerative colitis (UC) and between UC and Crohn’s disease (CD). In addition, our analysis also indicates the genetic sharing in the MHC region among systemic lupus (SLE), celiac disease (CEL) and common variable immunodeficiency (CVID). Results from real data and simulation studies show that Max-block provides an important alternative to commonly used genetic correlation estimation in understanding genetic correlation among complex diseases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
ding应助tufuczy采纳,获得10
1秒前
金金应助lingyan hu采纳,获得10
1秒前
上官若男应助lingyan hu采纳,获得10
1秒前
李爱国应助hj采纳,获得10
1秒前
科研通AI5应助杨YY采纳,获得10
2秒前
文艺的雨完成签到,获得积分10
3秒前
cyx完成签到,获得积分20
4秒前
4秒前
5秒前
6秒前
NexusExplorer应助lalalapa666采纳,获得10
6秒前
7秒前
8秒前
ZZzz发布了新的文献求助20
8秒前
tsuki发布了新的文献求助10
8秒前
8秒前
8秒前
我是老大应助chself采纳,获得10
9秒前
9秒前
学不动了发布了新的文献求助10
9秒前
9秒前
所所应助舒服的以彤采纳,获得30
9秒前
9秒前
粗犷的灵松完成签到 ,获得积分10
10秒前
不二完成签到,获得积分10
11秒前
闾丘惜萱发布了新的文献求助10
11秒前
x蝎子柰柰完成签到 ,获得积分10
11秒前
完美世界应助火日立采纳,获得10
11秒前
11秒前
微笑的傲易完成签到,获得积分10
11秒前
12秒前
13秒前
打工dog发布了新的文献求助10
13秒前
盐酸补钙完成签到,获得积分10
13秒前
zz完成签到,获得积分10
13秒前
感动澜完成签到,获得积分10
14秒前
mm发布了新的文献求助10
14秒前
学不动完成签到 ,获得积分10
14秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481226
求助须知:如何正确求助?哪些是违规求助? 3071419
关于积分的说明 9122057
捐赠科研通 2763201
什么是DOI,文献DOI怎么找? 1516316
邀请新用户注册赠送积分活动 701479
科研通“疑难数据库(出版商)”最低求助积分说明 700319