Robust backstepping sliding mode aircraft attitude and altitude control based on adaptive neural network using symmetric BLF

控制理论(社会学) 反推 李雅普诺夫函数 滑模控制 人工神经网络 稳健性(进化) 自适应控制 有界函数 计算机科学 鲁棒控制 姿态控制 非线性系统 控制工程 控制系统 工程类 数学 人工智能 控制(管理) 物理 数学分析 生物化学 化学 量子力学 基因 电气工程
作者
Prabhjeet Singh,Dipak Kumar Giri,A. K. Ghosh
出处
期刊:Aerospace Science and Technology [Elsevier]
卷期号:126: 107653-107653 被引量:26
标识
DOI:10.1016/j.ast.2022.107653
摘要

In this paper, asymptotic control of attitude and altitude of the aircraft is proposed by employing robust backstepping sliding mode control (BSMC) in conjunction with adaptive radial basis function neural network (RBFNN). Accurate knowledge of the non-linear aerodynamic forces and moments, particularly high-fidelity models, is of paramount importance to arrive at such a control strategy under a continuous dynamic environment. Adaptive RBFNN is used to approximate such an unknown non-linear function by continuously updating the network weights in rapidly varying conditions. Further, adaptation laws are used concurrently with neural networks to update the control power derivatives. These adaptive neural networks are used within the architecture of backstepping, integrated with the sliding surfaces where angular rates act as the virtual controller. The postulation of such law requires only minimal information about the aerodynamic model beyond well-known physical features. Moreover, Barrier Lyapunov Function (BLF) candidate is employed to constrain the state of the plant from transgressing a specific limit. Closed-loop signals are theoretically proved to be semi-globally uniformly ultimately bounded in the sense of Lyapunov. Finally, the robustness of the designed flight control law is explored by appending uncertainties and bounded exogenous disturbances in the plant. The results obtained in the present study signify good control performance where output tracks the reference signals by forcing the system states to remain in the designed sliding surfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Shawn发布了新的文献求助10
2秒前
丰知然应助科研通管家采纳,获得10
3秒前
3秒前
丰知然应助科研通管家采纳,获得10
3秒前
慕青应助科研通管家采纳,获得10
3秒前
科目三应助科研通管家采纳,获得10
3秒前
王哪跑12发布了新的文献求助10
3秒前
SYLH应助科研通管家采纳,获得10
3秒前
Akim应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
HannahLL应助科研通管家采纳,获得30
4秒前
JamesPei应助科研通管家采纳,获得10
4秒前
chinzz应助科研通管家采纳,获得10
4秒前
丰富的寒蕾完成签到,获得积分10
4秒前
5秒前
6秒前
7秒前
7秒前
本微尘发布了新的文献求助10
7秒前
8秒前
Greetdawn完成签到,获得积分10
9秒前
万能图书馆应助wu采纳,获得10
9秒前
量子力学完成签到,获得积分10
10秒前
46464号发布了新的文献求助10
11秒前
今天真暖发布了新的文献求助10
12秒前
15秒前
17秒前
xl完成签到 ,获得积分10
18秒前
19秒前
搜集达人应助稳重向南采纳,获得10
19秒前
从容航空完成签到,获得积分10
20秒前
21秒前
NexusExplorer应助46464号采纳,获得10
22秒前
23秒前
孙小雨发布了新的文献求助10
24秒前
SQXT应助多情的寻真采纳,获得20
26秒前
26秒前
英姑应助研友_Zr2l4Z采纳,获得10
27秒前
研友_VZG7GZ应助今天不加班采纳,获得10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3455255
求助须知:如何正确求助?哪些是违规求助? 3050560
关于积分的说明 9021769
捐赠科研通 2739201
什么是DOI,文献DOI怎么找? 1502472
科研通“疑难数据库(出版商)”最低求助积分说明 694544
邀请新用户注册赠送积分活动 693335