A Metallochaperone HIPP33 Is Required for Rice Zinc and Iron Homeostasis and Productivity

水稻 生物强化 突变体 生物 糙米 农学 作物 野生型 细胞生物学 基因 化学 遗传学 食品科学 有机化学
作者
Hong Cao,Li Cao,Bai Qing Zhang,Justice Kipkorir Rono,Zhi Min Yang
出处
期刊:Agronomy [Multidisciplinary Digital Publishing Institute]
卷期号:12 (2): 488-488 被引量:9
标识
DOI:10.3390/agronomy12020488
摘要

Both zinc (Zn) and iron (Fe) are essential micro-nutrients for plant growth and development, yet their levels in plants are tightly regulated to prevent either deficiency or phytotoxicity. In agronomic reality, such an imbalance of metal bioavailability to crops occurs frequently. Thus, mining genetic resources to improve crop traits relevant to metal homeostasis is a great challenge to ensure crop yield and food quality. This study functionally identified an uncharacterized metallochaperone family HIPP protein gene Heavy Metal Associated Isoprenylated Plant Proteins 33 (OsHIPP33) in rice (Oryza sativa). OsHIPP33 resides in the nucleus and plasma membrane and constitutively expresses throughout the lifespan. Transcription of OsHIPP33 is not induced by deprivation of Zn and Fe but upregulated under excessive Zn and Fe stress. In a short-term (one month) hydroponic study with the normal Zn and Fe supply, there were no significant changes in the growth and metal accumulation between the knockout (OsHIPP33) or knockdown (RNA interference) mutant lines and wild-type, while the long-term field trials (for two successive years) demonstrated that the mutation of OsHIPP33 significantly compromised the rice growth and development (such as rice leave tissues, panicle length, spikelet fertility, seed weight per plant, 1000-grain weight, etc.), with the mature grain yield of OsHIPP33 and RNAi lines reduced by 52% and 12–15% respectively, compared with wild-type. Furthermore, the accumulation of Zn and Fe in rice straw, husk and brown rice was also reduced. These results suggest that the disruption of OsHIPP33 can dampen rice agronomic traits, signifying that OsHIPP33 expression is required for Zn and Fe homeostasis and subsequent production of rice grains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
takashiyu发布了新的文献求助10
3秒前
3秒前
zzz发布了新的文献求助10
4秒前
4秒前
5秒前
jinjun发布了新的文献求助10
6秒前
虹归于叶完成签到 ,获得积分10
7秒前
sisi完成签到,获得积分20
7秒前
Dusk完成签到,获得积分10
8秒前
8秒前
8秒前
Rick发布了新的文献求助10
10秒前
penguin完成签到,获得积分10
11秒前
Angela完成签到,获得积分10
11秒前
迅速冥茗完成签到,获得积分10
11秒前
糖糖糖完成签到,获得积分10
12秒前
晴枫3648发布了新的文献求助10
12秒前
Wyzy完成签到,获得积分10
12秒前
12秒前
开胃咖喱完成签到,获得积分10
13秒前
月光完成签到,获得积分10
13秒前
含章完成签到,获得积分10
14秒前
含章发布了新的文献求助10
16秒前
ldgsd完成签到,获得积分10
18秒前
zzz发布了新的文献求助10
19秒前
徐宝福完成签到,获得积分10
20秒前
初余完成签到 ,获得积分10
20秒前
20秒前
搞怪超短裙完成签到,获得积分10
20秒前
桐桐应助柳叶小弯刀采纳,获得10
20秒前
21秒前
在水一方应助含章采纳,获得10
21秒前
随机游动完成签到,获得积分10
24秒前
ZW完成签到 ,获得积分10
26秒前
RJL发布了新的文献求助10
26秒前
浩浩完成签到 ,获得积分10
27秒前
28秒前
咎青文完成签到,获得积分10
28秒前
科研通AI5应助xiaolan采纳,获得10
29秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674899
求助须知:如何正确求助?哪些是违规求助? 3229968
关于积分的说明 9788050
捐赠科研通 2940642
什么是DOI,文献DOI怎么找? 1612151
邀请新用户注册赠送积分活动 761064
科研通“疑难数据库(出版商)”最低求助积分说明 736577