Prediction of the onset of thermal runaway and its thermal hazards in 18650 lithium-ion battery abused by external heating

热失控 锂(药物) 材料科学 电池(电) 锂离子电池 氧化钴 荷电状态 热的 氧化物 核工程 法律工程学 分析化学(期刊) 复合材料 热力学 冶金 化学 工程类 色谱法 功率(物理) 内分泌学 物理 医学
作者
Pius Victor Chombo,Yossapong Laoonual
出处
期刊:Fire Safety Journal [Elsevier]
卷期号:129: 103560-103560 被引量:34
标识
DOI:10.1016/j.firesaf.2022.103560
摘要

This work developed empirical equations to predict the onset of thermal runaway (TR) and its related thermal hazards under external heating abuse. A set of Lithium Nickel Cobalt Aluminum Oxide (NCA), Lithium Cobalt Oxide (LCO) and Lithium Manganese Oxide (LMO) Li-ion batteries (LIBs) with 25–100% state of charge (SOC) was externally heated-to-fire. From the experimental results, we generated empirical equations to predict the onset of thermal runaway (TRonset) and hazards such as maximum surface temperature (Tsurf), and flame temperature (Tflame) except for LMO LIBs due to their violent explosions. To demonstrate the accuracy of predictions, we compared the results predicted with another set of test data from the same LIBs but different SOCs and evaluated the accuracy using percentage error (%Er). The developed empirical equations achieved higher prediction accuracy, with the TRonset reaching the %Er of less than 10% for both NCA and LCO LIBs. The lower SOC (20%) showed the greatest discrepancy, with the maximum %Er of 2.7 and 7.4% in LCO and NCA, respectively. A large variation of %Er in Tsurf was observed regardless of SOC due to violent explosion, and %Er reached the maximum of 15.4% and 24.0% in NCA and LCO, respectively. In Tflame, the highest %Er observed for NCA and LCO are 25.6% and 29.9%, respectively. Overall, %Er show no correlation with SOC in any of the TRonset, Tsurf and Tflame predictions. LMO as the most energy dense of the three LIB samples, many of them ruptured violently during the test. In light of the growing demand for energy dense LIBs, new empirical equations should include ruptured samples as well.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
2秒前
2秒前
小郑完成签到,获得积分10
2秒前
4秒前
朱朱完成签到,获得积分10
4秒前
4秒前
野猪发布了新的文献求助10
4秒前
圈圈发布了新的文献求助20
4秒前
爆米花应助科研通管家采纳,获得10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
Jasper应助科研通管家采纳,获得50
5秒前
天天快乐应助科研通管家采纳,获得10
5秒前
苏卿应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
Qianbaor应助科研通管家采纳,获得10
5秒前
5秒前
苏卿应助科研通管家采纳,获得10
5秒前
所所应助科研通管家采纳,获得10
5秒前
研友_VZG7GZ应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
Zn应助科研通管家采纳,获得10
5秒前
liyunma完成签到,获得积分10
5秒前
科研通AI5应助科研通管家采纳,获得10
5秒前
5秒前
5秒前
LY完成签到,获得积分10
6秒前
6秒前
ohh完成签到,获得积分10
7秒前
李姝慧发布了新的文献求助10
7秒前
元羞花发布了新的文献求助10
7秒前
无敌鱼发布了新的文献求助10
7秒前
7秒前
zmt1134完成签到,获得积分10
8秒前
我嘻嘻完成签到,获得积分20
9秒前
9秒前
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Comprehensive Computational Chemistry 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3553880
求助须知:如何正确求助?哪些是违规求助? 3129652
关于积分的说明 9383794
捐赠科研通 2828818
什么是DOI,文献DOI怎么找? 1555222
邀请新用户注册赠送积分活动 725923
科研通“疑难数据库(出版商)”最低求助积分说明 715331