Superior energy storage performances achieved in (Ba, Sr)TiO3-based bulk ceramics through composition design and Core-shell structure engineering

微观结构 陶瓷 材料科学 储能 电介质 煅烧 电池(电) 功率密度 矿物学 复合材料 工程物理 功率(物理) 光电子学 热力学 化学 物理 生物化学 催化作用
作者
Wei Huang,Ying Chen,Xin Li,Genshui Wang,Jiake Xia,Xianlin Dong
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:444: 135523-135523 被引量:23
标识
DOI:10.1016/j.cej.2022.135523
摘要

The conventional dielectric ceramics are extensively studied for applications in electronics and pulsed power systems owing to the advantages of high voltage and high power density. However, the inferior energy storage performance is difficult to satisfy the development requirements of integration and lightweight of power electronic devices. The main research efforts have been done to improve the energy storage density by enhancing the electric breakdown strength (BDS) or effective dielectric constant (ΔP/ΔE) due to the contradiction between ΔP/ΔE and BDS. Here, it is proposed to use composition design and microstructural core–shell engineering to surmount this contradiction and thus enhance the energy storage density. The heterogeneous microstructures are introduced through a two-step calcination, and the appearance of this microstructure is related to the destruction of the cooperative diffusion effect of multiple ions. Consequently, 0.93Ba0.55Sr0.45-xZnxTiO3-0.07BiMg2/3Nb1/3O3 (BSZT-BMN-x) ceramics with core–shell microstructure prepared by traditional solid-state reaction method exhibits an ultrahigh recoverable energy density of 5.92 J/cm3, a superior energy storage efficiency of 81.7% and an outstanding charge–discharge performance (PD = 144 MW/cm3, t0.9 = 44 ns). The experimental results and numerical simulations reveal that the doping of Zn2+ enhances the potential for off-centering of anions and cations, the core–shell microstructure makes the distribution of electric field to be regulated and the effective path of electric trees is extended to improve the BDS. The present research not only offers a novel paradigm for other material systems to further improve energy storage performance, but also should be generalizable for other functional materials for which a high BDS is required.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
狱颖发布了新的文献求助30
刚刚
刚刚
DTT发布了新的文献求助10
1秒前
Lucky完成签到,获得积分10
1秒前
Lee发布了新的文献求助10
1秒前
明亮的冷雪完成签到,获得积分10
2秒前
爆米花应助ZHEZHE采纳,获得10
2秒前
Summer发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
研友_kngjrL发布了新的文献求助10
3秒前
半山腰发布了新的文献求助10
4秒前
罗同学完成签到,获得积分10
4秒前
九柒完成签到,获得积分10
4秒前
4秒前
收醉人完成签到,获得积分10
5秒前
与桉完成签到,获得积分20
5秒前
SimonJay完成签到 ,获得积分10
5秒前
BINGBONG完成签到,获得积分10
6秒前
yeyu123发布了新的文献求助10
6秒前
6秒前
深情安青应助叶子采纳,获得10
7秒前
终成院士应助apple采纳,获得10
7秒前
zakarya完成签到,获得积分10
7秒前
可爱歌曲完成签到,获得积分10
7秒前
万步癫发布了新的文献求助10
7秒前
汉堡包应助寒冷的百招采纳,获得30
7秒前
风中的妖妖完成签到,获得积分10
8秒前
cyj完成签到,获得积分10
9秒前
响铃发布了新的文献求助10
9秒前
怦然心动发布了新的文献求助10
9秒前
懒洋洋tzy发布了新的文献求助10
9秒前
海绵宝宝完成签到,获得积分10
9秒前
奇异果发布了新的文献求助10
9秒前
鹿多多完成签到,获得积分10
10秒前
10秒前
糖发人完成签到 ,获得积分10
11秒前
甜甜圈发布了新的文献求助10
11秒前
火星上的百川完成签到,获得积分10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
中成药治疗优势病种临床应用指南 2000
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3447627
求助须知:如何正确求助?哪些是违规求助? 3043366
关于积分的说明 8993671
捐赠科研通 2731601
什么是DOI,文献DOI怎么找? 1498404
科研通“疑难数据库(出版商)”最低求助积分说明 692788
邀请新用户注册赠送积分活动 690578