亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Engram-Driven Videography

英语 前馈 计算机科学 录像 人工智能 代表(政治) 计算机视觉 神经科学 生物 工程类 政治学 政治 广告 控制工程 业务 法学
作者
Lu Fang,Mengqi Ji,Xiaoyun Yuan,Jing He,Jianing Zhang,Yinheng Zhu,Tian Zheng,Leyao Liu,Bin Wang,Qionghai Dai
出处
期刊:Engineering [Elsevier]
卷期号:25: 101-109
标识
DOI:10.1016/j.eng.2021.12.012
摘要

Sensing and understanding large-scale dynamic scenes require a high-performance imaging system. Conventional imaging systems pursue higher capability by simply increasing the pixel resolution via stitching cameras at the expense of a bulky system. Moreover, they strictly follow the feedforward pathway: that is, their pixel-level sensing is independent of semantic understanding. Differently, a human visual system owns superiority with both feedforward and feedback pathways: The feedforward pathway extracts object representation (referred to as memory engram) from visual inputs, while, in the feedback pathway, the associated engram is reactivated to generate hypotheses about an object. Inspired by this, we propose a dual-pathway imaging mechanism, called engram-driven videography. We start by abstracting the holistic representation of the scene, which is associated bidirectionally with local details, driven by an instance-level engram. Technically, the entire system works by alternating between the excitation–inhibition and association states. In the former state, pixel-level details become dynamically consolidated or inhibited to strengthen the instance-level engram. In the association state, the spatially and temporally consistent content becomes synthesized driven by its engram for outstanding videography quality of future scenes. The association state serves as the imaging of future scenes by synthesizing spatially and temporally consistent content driven by its engram. Results of extensive simulations and experiments demonstrate that the proposed system revolutionizes the conventional videography paradigm and shows great potential for videography of large-scale scenes with multi-objects.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助fhznuli采纳,获得10
12秒前
19秒前
fhznuli发布了新的文献求助10
24秒前
36秒前
白华苍松完成签到,获得积分10
55秒前
春山完成签到 ,获得积分10
1分钟前
harry2021完成签到,获得积分10
1分钟前
学术小白完成签到,获得积分10
2分钟前
慕青应助linhanwenzhou采纳,获得10
2分钟前
蔡从安发布了新的文献求助10
2分钟前
2分钟前
2分钟前
linhanwenzhou发布了新的文献求助10
2分钟前
2分钟前
烟花应助linhanwenzhou采纳,获得10
2分钟前
3分钟前
Ava应助benbenca采纳,获得30
3分钟前
3分钟前
蔡从安发布了新的文献求助10
3分钟前
精明的迎松应助蔡从安采纳,获得10
4分钟前
4分钟前
蔡从安完成签到,获得积分20
4分钟前
4分钟前
5分钟前
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
6分钟前
linhanwenzhou发布了新的文献求助10
6分钟前
6分钟前
6分钟前
6分钟前
科研通AI2S应助韩国人的爹采纳,获得10
6分钟前
YuanbinMao应助韩国人的爹采纳,获得10
6分钟前
6分钟前
Shilong发布了新的文献求助10
6分钟前
linhanwenzhou完成签到,获得积分10
7分钟前
汉堡包应助科研通管家采纳,获得10
7分钟前
jjq完成签到,获得积分10
8分钟前
8分钟前
8分钟前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Semiconductor Process Reliability in Practice 720
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3229726
求助须知:如何正确求助?哪些是违规求助? 2877246
关于积分的说明 8198622
捐赠科研通 2544716
什么是DOI,文献DOI怎么找? 1374622
科研通“疑难数据库(出版商)”最低求助积分说明 646997
邀请新用户注册赠送积分活动 621808