Boolean Particle Swarm Optimization with various Evolutionary Population Dynamics approaches for feature selection problems

计算机科学 特征选择 适应度比例选择 人口 人工智能 二进制数 锦标赛选拔 局部最优 选择(遗传算法) 数学优化 适应度函数 机器学习 遗传算法 数学 社会学 人口学 算术
作者
Thaer Thaher,Hamouda Chantar,Jingwei Too,Majdi Mafarja,Hamza Turabieh,Essam H. Houssein
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:195: 116550-116550 被引量:20
标识
DOI:10.1016/j.eswa.2022.116550
摘要

In the feature selection process, reaching the best subset of features is considered a difficult task. To deal with the complexity associated with this problem, a sophisticated and robust optimization approach is needed. This paper proposes an efficient feature selection approach based on a Boolean variant of Particle Swarm Optimization (BPSO) boosted with Evolutionary Population Dynamics (EPD). The proposed improvement assists the BPSO to avoid local optima obstacles via boosting its exploration ability. In the BPSO-EPD, the worst half of the solutions are discarded by repositioning them around the optimal solutions selected from the best half. Six natural selection mechanisms comprising Best-based, Tournament, Roulette wheel, Stochastic universal sampling, Linear rank, and Random-based are employed to select guiding solutions. To assess the performance of the proposed improvement, 22 well-regarded datasets collected from the UCI repository are employed. The experimental results demonstrate the superiority of the proposed EPD-based feature selection approaches, especially the BPSO-TEPD variant when compared with conventional BPSO and other five EPD-based variants. Taking SpecEW dataset as an example, an increment of 6.7% accuracy can be achieved for BSPO-TEPD. Consequently, BPSO-TEPD approach also outperformed other well-known optimizers, including two binary variants of PSO using S-shaped transfer function (SBPSO) and V-shaped transfer function (VBPSO), Binary Grasshopper Optimization Algorithm (BGOA), Binary Gravitational Search Algorithm (BGSA), Binary Ant Lion Optimizer (BALO), Binary Bat algorithm (BBA), Binary Salp Swarm Algorithm (BSSA), Binary Whale Optimization Algorithm (BWOA), and Binary Teaching-Learning Based Optimization (BTLBO). The result emphasizes the excellent behavior of EPD strategies in evolving the ability of BPSO when dealing with feature selection problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白白完成签到,获得积分10
刚刚
笨笨西牛完成签到 ,获得积分10
刚刚
帅哥吴克完成签到,获得积分10
2秒前
2秒前
脑洞疼应助芋圆波波采纳,获得10
3秒前
4秒前
思源应助Sygganggang采纳,获得10
6秒前
123发布了新的文献求助10
6秒前
6秒前
KoitoYuu完成签到,获得积分10
9秒前
10秒前
hdh发布了新的文献求助20
10秒前
v111完成签到,获得积分10
12秒前
12秒前
12秒前
13秒前
13秒前
科研通AI2S应助shawn采纳,获得10
13秒前
Lucas应助葭月十七采纳,获得10
13秒前
14秒前
yy发布了新的文献求助10
14秒前
Sygganggang发布了新的文献求助10
17秒前
踏实天空应助1234567xjy采纳,获得10
18秒前
大只鱼发布了新的文献求助10
18秒前
大壮应助加油采纳,获得10
18秒前
19秒前
科研通AI2S应助鹅鹅采纳,获得10
19秒前
中西西完成签到 ,获得积分10
20秒前
廖无极完成签到 ,获得积分10
20秒前
SARS发布了新的文献求助10
20秒前
20秒前
CodeCraft应助科研通管家采纳,获得10
21秒前
共享精神应助科研通管家采纳,获得30
21秒前
科研通AI2S应助科研通管家采纳,获得10
21秒前
pluto应助科研通管家采纳,获得10
22秒前
JamesPei应助科研通管家采纳,获得10
22秒前
sunrase发布了新的文献求助10
22秒前
CipherSage应助科研通管家采纳,获得10
22秒前
汉堡包应助科研通管家采纳,获得10
22秒前
脑洞疼应助科研通管家采纳,获得10
22秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138914
求助须知:如何正确求助?哪些是违规求助? 2789858
关于积分的说明 7792896
捐赠科研通 2446244
什么是DOI,文献DOI怎么找? 1301004
科研通“疑难数据库(出版商)”最低求助积分说明 626066
版权声明 601079