Boolean Particle Swarm Optimization with various Evolutionary Population Dynamics approaches for feature selection problems

计算机科学 特征选择 适应度比例选择 人口 人工智能 二进制数 锦标赛选拔 局部最优 选择(遗传算法) 数学优化 适应度函数 机器学习 遗传算法 数学 社会学 人口学 算术
作者
Thaer Thaher,Hamouda Chantar,Jingwei Too,Majdi Mafarja,Hamza Turabieh,Essam H. Houssein
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:195: 116550-116550 被引量:20
标识
DOI:10.1016/j.eswa.2022.116550
摘要

In the feature selection process, reaching the best subset of features is considered a difficult task. To deal with the complexity associated with this problem, a sophisticated and robust optimization approach is needed. This paper proposes an efficient feature selection approach based on a Boolean variant of Particle Swarm Optimization (BPSO) boosted with Evolutionary Population Dynamics (EPD). The proposed improvement assists the BPSO to avoid local optima obstacles via boosting its exploration ability. In the BPSO-EPD, the worst half of the solutions are discarded by repositioning them around the optimal solutions selected from the best half. Six natural selection mechanisms comprising Best-based, Tournament, Roulette wheel, Stochastic universal sampling, Linear rank, and Random-based are employed to select guiding solutions. To assess the performance of the proposed improvement, 22 well-regarded datasets collected from the UCI repository are employed. The experimental results demonstrate the superiority of the proposed EPD-based feature selection approaches, especially the BPSO-TEPD variant when compared with conventional BPSO and other five EPD-based variants. Taking SpecEW dataset as an example, an increment of 6.7% accuracy can be achieved for BSPO-TEPD. Consequently, BPSO-TEPD approach also outperformed other well-known optimizers, including two binary variants of PSO using S-shaped transfer function (SBPSO) and V-shaped transfer function (VBPSO), Binary Grasshopper Optimization Algorithm (BGOA), Binary Gravitational Search Algorithm (BGSA), Binary Ant Lion Optimizer (BALO), Binary Bat algorithm (BBA), Binary Salp Swarm Algorithm (BSSA), Binary Whale Optimization Algorithm (BWOA), and Binary Teaching-Learning Based Optimization (BTLBO). The result emphasizes the excellent behavior of EPD strategies in evolving the ability of BPSO when dealing with feature selection problems.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wangfang0228完成签到 ,获得积分10
刚刚
应俊完成签到 ,获得积分0
2秒前
折柳完成签到 ,获得积分10
2秒前
星辰大海应助123采纳,获得30
2秒前
明理的亦寒完成签到 ,获得积分10
3秒前
bkagyin应助默默采纳,获得10
3秒前
Позовименя完成签到,获得积分10
4秒前
harden9159完成签到,获得积分10
5秒前
刻苦羽毛完成签到,获得积分10
6秒前
11秒前
派大星和海绵宝宝完成签到 ,获得积分10
13秒前
16秒前
大意的火龙果完成签到 ,获得积分10
17秒前
百事可爱完成签到 ,获得积分10
18秒前
研友_5Zl4VZ完成签到,获得积分10
18秒前
cc66发布了新的文献求助10
19秒前
minuxSCI完成签到,获得积分10
21秒前
逆光完成签到 ,获得积分10
22秒前
ashin17发布了新的文献求助10
24秒前
AliEmbark发布了新的文献求助10
25秒前
jiangjiang完成签到 ,获得积分10
25秒前
cc66完成签到 ,获得积分10
30秒前
嘲鸫完成签到,获得积分10
35秒前
zhaoman完成签到,获得积分10
36秒前
彼得大帝完成签到,获得积分10
37秒前
tatawo28完成签到 ,获得积分10
37秒前
可爱的香菇完成签到 ,获得积分10
39秒前
再次追逐夏天完成签到,获得积分10
46秒前
47秒前
47秒前
内向凌波完成签到 ,获得积分10
53秒前
庾尔风发布了新的文献求助10
53秒前
CodeCraft应助夜班平安采纳,获得10
54秒前
58秒前
姜彩秀完成签到,获得积分10
58秒前
灵巧的青寒完成签到,获得积分10
1分钟前
theThreeMagi完成签到,获得积分10
1分钟前
乐观健柏完成签到,获得积分10
1分钟前
1分钟前
困惑仔应助ABBCCC采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de guyane 2500
Common Foundations of American and East Asian Modernisation: From Alexander Hamilton to Junichero Koizumi 600
Signals, Systems, and Signal Processing 510
Discrete-Time Signals and Systems 510
Campbell Walsh Wein Urology 3-Volume Set 12th Edition 200
Three-dimensional virtual model for robot-assisted partial nephrectomy in totally endophytic renal tumors: a propensity-score matching analysis with a control group 200
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5866758
求助须知:如何正确求助?哪些是违规求助? 6426838
关于积分的说明 15654966
捐赠科研通 4981749
什么是DOI,文献DOI怎么找? 2686737
邀请新用户注册赠送积分活动 1629553
关于科研通互助平台的介绍 1587550