Boolean Particle Swarm Optimization with various Evolutionary Population Dynamics approaches for feature selection problems

计算机科学 特征选择 适应度比例选择 人口 人工智能 二进制数 锦标赛选拔 局部最优 选择(遗传算法) 数学优化 适应度函数 机器学习 遗传算法 数学 社会学 人口学 算术
作者
Thaer Thaher,Hamouda Chantar,Jingwei Too,Majdi Mafarja,Hamza Turabieh,Essam H. Houssein
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:195: 116550-116550 被引量:20
标识
DOI:10.1016/j.eswa.2022.116550
摘要

In the feature selection process, reaching the best subset of features is considered a difficult task. To deal with the complexity associated with this problem, a sophisticated and robust optimization approach is needed. This paper proposes an efficient feature selection approach based on a Boolean variant of Particle Swarm Optimization (BPSO) boosted with Evolutionary Population Dynamics (EPD). The proposed improvement assists the BPSO to avoid local optima obstacles via boosting its exploration ability. In the BPSO-EPD, the worst half of the solutions are discarded by repositioning them around the optimal solutions selected from the best half. Six natural selection mechanisms comprising Best-based, Tournament, Roulette wheel, Stochastic universal sampling, Linear rank, and Random-based are employed to select guiding solutions. To assess the performance of the proposed improvement, 22 well-regarded datasets collected from the UCI repository are employed. The experimental results demonstrate the superiority of the proposed EPD-based feature selection approaches, especially the BPSO-TEPD variant when compared with conventional BPSO and other five EPD-based variants. Taking SpecEW dataset as an example, an increment of 6.7% accuracy can be achieved for BSPO-TEPD. Consequently, BPSO-TEPD approach also outperformed other well-known optimizers, including two binary variants of PSO using S-shaped transfer function (SBPSO) and V-shaped transfer function (VBPSO), Binary Grasshopper Optimization Algorithm (BGOA), Binary Gravitational Search Algorithm (BGSA), Binary Ant Lion Optimizer (BALO), Binary Bat algorithm (BBA), Binary Salp Swarm Algorithm (BSSA), Binary Whale Optimization Algorithm (BWOA), and Binary Teaching-Learning Based Optimization (BTLBO). The result emphasizes the excellent behavior of EPD strategies in evolving the ability of BPSO when dealing with feature selection problems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lizhi完成签到,获得积分10
刚刚
彭于晏应助科研通管家采纳,获得20
刚刚
NexusExplorer应助科研通管家采纳,获得10
刚刚
摇摇晃晃完成签到 ,获得积分10
刚刚
刚刚
乐乐应助科研通管家采纳,获得10
刚刚
贪玩手链应助科研通管家采纳,获得20
刚刚
科研通AI5应助科研通管家采纳,获得30
刚刚
CipherSage应助科研通管家采纳,获得10
刚刚
共享精神应助科研通管家采纳,获得10
刚刚
在水一方应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
李健的小迷弟应助liyi采纳,获得10
1秒前
华仔应助科研通管家采纳,获得20
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
赘婿应助科研通管家采纳,获得20
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
ding应助科研通管家采纳,获得20
1秒前
1秒前
1秒前
Ava应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
大个应助科研通管家采纳,获得10
2秒前
思源应助科研通管家采纳,获得10
2秒前
pluto应助科研通管家采纳,获得10
2秒前
ding应助科研通管家采纳,获得10
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
3秒前
FFFFFFF应助yatou5651采纳,获得10
3秒前
3秒前
3秒前
Agernon应助正直冰露采纳,获得10
3秒前
3秒前
茕穹完成签到,获得积分10
3秒前
调研昵称发布了新的文献求助30
4秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740