作者
J. Brooks Harder,Eva Loffredo-Verde,Sonakshi Bhattacharjee,Clarissa daCosta
摘要
Exposure to different concentrations of fatty acids during fetal life may affect growth and metabolism. However, most studies examined individual fatty acids, whereas concentrations highly correlate and may interact with each other. We aimed to evaluate patterns of plasma fatty acids during pregnancy and their associations with growth, body composition, and cardiometabolic health of the 6-year-old offspring.This study was performed in 4830 mother–child pairs participating in a population-based cohort in the Netherlands. Around 20 weeks of gestation, we measured plasma phospholipid concentrations of 22 fatty acids, in which we identified three fatty acid patterns using principal component analysis: a ‘high n-6 polyunsaturated fatty acid (PUFA)’ pattern, a ‘monounsaturated and saturated fatty acid (MUFA and SFA)’ pattern, and a ‘high n-3 PUFA’ pattern. When the children were 6 years old, we measured their anthropometrics and detailed body composition (using dual-energy X-ray absorptiometry), and we calculated their body mass index (BMI), fat mass index (FMI), fat-free mass index (FFMI). At the same age, children's blood pressure, and serum insulin, HDL-cholesterol, and triacylglycerol were measured.After adjustment for confounders and the other patterns, a higher score for the ‘high n-6 PUFA’ pattern during pregnancy was associated with a higher height, BMI, and FFMI in the offspring at 6 years, but not independently with cardiometabolic outcomes. The ‘MUFA and SFA’ pattern was not consistently associated with child body composition or cardiometabolic health. A higher score for the ‘high n-3 PUFA’ pattern was associated with a lower FMI, higher FFMI, higher HDL-cholesterol, and lower triacylglycerol.Our results suggest that plasma fatty acid patterns during pregnancy may affect offspring's body composition and cardiometabolic health. Specifically, a pattern characterized by high n-3 PUFA levels was associated with a more favorable body composition and blood lipid profile.