A computational approach based on extended finite element method for thin porous layers in acoustic problems

有限元法 离散化 不连续性分类 多边形网格 计算机科学 扩展有限元法 多孔介质 几何学 数学 材料科学 数学分析 结构工程 多孔性 工程类 复合材料
作者
Shaoqi Wu,Olivier Dazel,Grégory Legrain
出处
期刊:International Journal for Numerical Methods in Engineering [Wiley]
卷期号:123 (18): 4209-4243 被引量:3
标识
DOI:10.1002/nme.7006
摘要

Abstract The simulation of stationary acoustic fields involving thin porous layers is addressed in the present article. Layer thickness is assumed to be relatively thin in comparison to the overall computational domain, but its non‐negligible acoustic impact must be taken into consideration in the numerical model. Within the classical finite element method (FEM), meshes are compatible at material interfaces and the element distortions needs to be avoided. These requirements usually lead to an excessively costly spatial discretization for these problems of interest, as it forces mesh refinement surrounding the thin layer. This article provides a computational approach to relax this restriction. A generalized interface model derived from the plane wave transfer matrix Method (TMM) is established for modeling thin layers. We develop variationally consistent formulations to impose the interface conditions from models of thin layers for diverse coupling configurations, in which both acoustic fluid and poro‐elastic media are taken into account. The computational domain is discretized using the extended finite element method (X‐FEM) in order to introduce strong discontinuities in elements independently of the mesh. Implementation of the proposed formulations within X‐FEM is verified to be capable of providing accurate and robust solutions. The efficiency and flexibility of the present approach for multi‐layer and complex geometry problems are demonstrated compared to classical interface‐fitted finite element models through different simulation scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lifeboast完成签到,获得积分20
刚刚
都是发布了新的文献求助30
1秒前
nanlio发布了新的文献求助10
1秒前
naivete发布了新的文献求助10
2秒前
2秒前
张朝程完成签到,获得积分10
3秒前
王之发布了新的文献求助80
3秒前
111发布了新的文献求助10
4秒前
4秒前
李白乘舟将欲行完成签到 ,获得积分10
4秒前
李爱国应助zy123采纳,获得10
4秒前
4秒前
5秒前
7秒前
7秒前
7秒前
LLL完成签到,获得积分10
7秒前
9秒前
jbear发布了新的文献求助10
9秒前
LLL发布了新的文献求助10
10秒前
lkc完成签到,获得积分10
11秒前
CipherSage应助云_123采纳,获得10
11秒前
11秒前
细心妙旋完成签到 ,获得积分10
12秒前
麦可发布了新的文献求助20
13秒前
nanlio完成签到,获得积分10
13秒前
13秒前
14秒前
大刘完成签到,获得积分10
15秒前
15秒前
17秒前
咯咯咯发布了新的文献求助10
17秒前
纪沛儿完成签到,获得积分10
18秒前
合适的梦菡完成签到,获得积分10
19秒前
Asdaf发布了新的文献求助10
19秒前
20秒前
20秒前
20秒前
21秒前
豆豆应助zzz采纳,获得10
21秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135577
求助须知:如何正确求助?哪些是违规求助? 2786454
关于积分的说明 7777484
捐赠科研通 2442441
什么是DOI,文献DOI怎么找? 1298558
科研通“疑难数据库(出版商)”最低求助积分说明 625193
版权声明 600847