亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Graphene foam field-effect transistor for ultra-sensitive label-free detection of ATP

生物传感器 三磷酸腺苷 纳米技术 石墨烯 场效应晶体管 材料科学 晶体管 检出限 溶解 生物物理学 化学 生物化学 生物 电气工程 色谱法 电压 工程类
作者
Shicai Xu,Chao Zhang,Shouzhen Jiang,Guodong Hu,Xiaoyue Li,Yan Zou,Hanping Liu,Jun Li,Zhenhua Li,Xiaoxin Wang,Mingzhen Li,Jihua Wang
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:284: 125-133 被引量:46
标识
DOI:10.1016/j.snb.2018.12.129
摘要

As the major energy molecule of cells, adenosine triphosphate (ATP) regulates various biological processes and has been found to be closely related to many diseases. Therefore, ATP detection in trace amounts is very useful for understanding various biological processes, studying cellular events such as proliferation and apoptosis, and estimating contaminated degree of food and medical instrument. To date, the trace sensing ATP at picomolar level in biological systems is still a major challenge. Because of unique electrical and structural properties, graphene has attracted much attention in biosensing applications. Here, a sensitive and selective graphene foam field-effect transistor (GF-FET) biosensor for ATP detection is demonstrated. The lowest detection limit of the biosensors for analyzing ATP is down to 0.5 pM, which is one or several orders lower than the reported results. Moreover, the GF-FET biosensor show a good linear current response to ATP concentrations in a broad range from 0.5 pM to 50 μM. The GF-FET sensor surface can be regenerated for many times and used for up to weeks without significant loss of functionality. Based on this sensing platform, label-free measurements of ATP concentrations in human serum as well as in cell lysate are demonstrated. The work may provide a novel platform to study ATP release and energy-regulated biological processes, suggesting a promising future for biosensing applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
子卿完成签到,获得积分0
1秒前
9秒前
tanjuan发布了新的文献求助10
14秒前
Mia关注了科研通微信公众号
33秒前
34秒前
阔达碧空发布了新的文献求助10
39秒前
53秒前
Mia发布了新的文献求助10
59秒前
NexusExplorer应助科研通管家采纳,获得10
1分钟前
嗯哼应助科研通管家采纳,获得10
1分钟前
嗯哼应助科研通管家采纳,获得10
1分钟前
tuanheqi应助科研通管家采纳,获得200
1分钟前
1分钟前
1分钟前
等等发布了新的文献求助30
1分钟前
1分钟前
poser发布了新的文献求助10
1分钟前
等等完成签到,获得积分10
1分钟前
Wang完成签到 ,获得积分20
1分钟前
2分钟前
2分钟前
Lucas应助三叔采纳,获得10
2分钟前
mixieer完成签到,获得积分10
2分钟前
mixieer发布了新的文献求助10
2分钟前
Mia完成签到,获得积分20
2分钟前
诚心的信封完成签到 ,获得积分10
2分钟前
韩韩完成签到 ,获得积分10
2分钟前
zero完成签到,获得积分10
2分钟前
Mia发布了新的文献求助30
2分钟前
小二郎应助科研通管家采纳,获得10
3分钟前
3分钟前
嗯哼应助科研通管家采纳,获得10
3分钟前
mermer发布了新的文献求助10
3分钟前
3分钟前
3分钟前
三叔发布了新的文献求助10
3分钟前
聪明的小海豚完成签到,获得积分20
3分钟前
科研通AI2S应助健康的绮南采纳,获得10
3分钟前
三叔完成签到,获得积分0
3分钟前
4分钟前
高分求助中
求助这个网站里的问题集 1000
Floxuridine; Third Edition 1000
Tracking and Data Fusion: A Handbook of Algorithms 1000
La décision juridictionnelle 800
Rechtsphilosophie und Rechtstheorie 800
求口腔牙齿松动病症相关外文书籍2-3本 500
Academic entitlement: Adapting the equity preference questionnaire for a university setting 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 免疫学 细胞生物学 电极
热门帖子
关注 科研通微信公众号,转发送积分 2868545
求助须知:如何正确求助?哪些是违规求助? 2475978
关于积分的说明 6712108
捐赠科研通 2163770
什么是DOI,文献DOI怎么找? 1149693
版权声明 585565
科研通“疑难数据库(出版商)”最低求助积分说明 564474