Porous carbon nanosheet with high surface area derived from waste poly(ethylene terephthalate) for supercapacitor applications

材料科学 超级电容器 纳米片 碳化 化学工程 比表面积 电容 碳纤维 多孔性 电解质 电流密度 纳米技术 电极 催化作用 复合材料 有机化学 扫描电子显微镜 化学 物理化学 复合数 工程类 物理 量子力学
作者
Yanliang Wen,Krzysztof Kierzek,Jiakang Min,Xuecheng Chen,Jiang Gong,Ran Niu,Xin Wen,Jalal Azadmanjiri,Ewa Mijowska,Tao Tang
出处
期刊:Journal of Applied Polymer Science [Wiley]
卷期号:137 (5) 被引量:56
标识
DOI:10.1002/app.48338
摘要

ABSTRACT Converting waste plastics into valuable carbon materials has obtained increasing attention. In addition, carbon materials have shown to be the ideal electrode materials for double‐layer supercapacitors owing to their large specific surface area, high electrical conductivity, and stable physicochemical properties. Herein, an easily operated approach is established to efficiently convert waste poly(ethylene terephthalate) beverage bottles into porous carbon nanosheet (PCNS) through the combined processes of catalytic carbonization and KOH activation. PCNS features an ultrahigh specific surface area (2236 m 2 g −1 ), hierarchically porous architecture, and a large pore volume (3.0 cm 3 g −1 ). Such excellent physicochemical properties conjointly contribute to the outstanding supercapacitive performance: 169 F g −1 (6 M KOH) and 135 F g −1 (1 M Na 2 SO 4 ). Furthermore, PCNS shows a high capacitance of 121 F g −1 and a corresponding energy density of 30.6 Wh kg −1 at 0.2 A g −1 in the electrolyte of 1 M TEATFB/PC. When the current density increases to 10 A g −1 , the capacitance remains at 95 F g −1 , indicating the extraordinary rate capability. This work not only proposes a facile approach to synthesize PCNS for supercapacitors, but also puts forward a potential sustainable way to recycle waste plastics and further hopefully mitigates the waste plastics‐related environmental issues. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137 , 48338.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助科研通管家采纳,获得20
刚刚
科研通AI5应助科研通管家采纳,获得10
刚刚
汉堡包应助科研通管家采纳,获得10
1秒前
SciGPT应助科研通管家采纳,获得30
1秒前
916应助科研通管家采纳,获得10
1秒前
Bio应助felix采纳,获得50
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
Bio应助科研通管家采纳,获得10
1秒前
GEeZiii发布了新的文献求助10
1秒前
916应助科研通管家采纳,获得10
1秒前
丘比特应助科研通管家采纳,获得10
1秒前
ED应助科研通管家采纳,获得10
1秒前
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
在水一方应助科研通管家采纳,获得10
1秒前
lucyliu完成签到 ,获得积分10
1秒前
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
SYLH应助科研通管家采纳,获得20
2秒前
小马甲应助科研通管家采纳,获得10
2秒前
天天快乐应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
在水一方应助科研通管家采纳,获得10
2秒前
科研通AI5应助科研通管家采纳,获得10
2秒前
斯文败类应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
NameSL完成签到,获得积分10
3秒前
俏皮的匕完成签到,获得积分10
3秒前
Fonseca发布了新的文献求助10
4秒前
Mollyshimmer完成签到 ,获得积分10
4秒前
吉以寒完成签到,获得积分10
4秒前
marson发布了新的文献求助10
5秒前
5秒前
5秒前
Jerry完成签到,获得积分10
5秒前
5秒前
spricity完成签到,获得积分10
6秒前
Yan完成签到,获得积分10
7秒前
7秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987223
求助须知:如何正确求助?哪些是违规求助? 3529513
关于积分的说明 11245651
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804027
邀请新用户注册赠送积分活动 881303
科研通“疑难数据库(出版商)”最低求助积分说明 808650