无粘流
磁流体驱动
磁流体力学
粘度
索波列夫空间
零(语言学)
压缩性
物理
空格(标点符号)
数学物理
数学分析
数学
经典力学
热力学
磁场
量子力学
计算机科学
操作系统
哲学
语言学
出处
期刊:Discrete and Continuous Dynamical Systems
[American Institute of Mathematical Sciences]
日期:2009-01-01
卷期号:25 (2): 575-583
被引量:156
标识
DOI:10.3934/dcds.2009.25.575
摘要
In this paper we derive a criterion for the breakdown of classicalsolutions to the incompressible magnetohydrodynamic equations withzero viscosity and positive resistivity in $\mathbb{R}^3$. Thisresult is analogous to the celebrated Beale-Kato-Majda's breakdowncriterion for the inviscid Eluer equations of incompressiblefluids. In $\mathbb{R}^2$ we establish global weak solutions tothe magnetohydrodynamic equations with zero viscosity and positiveresistivity for initial data in Sobolev space $H^1(\mathbb{R}^2)$.
科研通智能强力驱动
Strongly Powered by AbleSci AI