变形
形状记忆聚合物
形状记忆合金
智能材料
材料科学
执行机构
超细纤维
纤维
3D打印
弯曲
计算机科学
复合数
形状变化
制作
纳米技术
复合材料
人工智能
病理
生物
替代医学
进化生物学
医学
计算机视觉
作者
Luquan Ren,Bingqian Li,Zhengyi Song,Qingping Liu,Lei Ren,Xueli Zhou
标识
DOI:10.1016/j.compositesb.2019.01.061
摘要
Shape memory polymers (SMPs) generally change shape from a temporary state to a permanent state, and the permanent shape is only determined by its initial form, which leads to the lack of design freedom for SMPs. In order to enrich morphing behavior and extend applications of SMPs, bioinspired design and fabrication methods need to be developed. Many biological dynamic materials enable shape changes ranging from bending, twisting to spiraling using site-specific aligned cellulose microfibers orientations. Here, we proposed an approach integrating bioinspired fiber architectures and varying 3D printing parameters into SMPs, to achieve tunable permanent shape and shape memory properties. The self-folded flower and sequentially deployed smart robotic hand have been developed to demonstrate the feasibility of our method. The proposed bioinspired SMPs, which is rarely seen in the previous reports, have intriguing fundamental properties and hold great potential for applications in soft actuators, smart textiles, wearable equipment, medical devices, and other intelligent apparatus.
科研通智能强力驱动
Strongly Powered by AbleSci AI