渗透力
膜
材料科学
层状结构
功率密度
反向电渗析
化学工程
缓压渗透
能量转换效率
纳米流体学
化学物理
纳米技术
光电子学
功率(物理)
化学
热力学
正渗透
复合材料
电渗析
物理
工程类
反渗透
生物化学
作者
Seung‐Hyun Hong,Fangwang Ming,Yusuf Shi,Renyuan Li,In S. Kim,Chuyang Y. Tang,Husam N. Alshareef,Peng Wang
出处
期刊:ACS Nano
[American Chemical Society]
日期:2019-07-15
卷期号:13 (8): 8917-8925
被引量:274
标识
DOI:10.1021/acsnano.9b02579
摘要
Salinity-gradient is emerging as one of the promising renewable energy sources but its energy conversion is severely limited by unsatisfactory performance of available semipermeable membranes. Recently, nanoconfined channels, as osmotic conduits, have shown superior energy conversion performance to conventional technologies. Here, ion selective nanochannels in lamellar Ti3C2Tx MXene membranes are reported for efficient osmotic power harvesting. These subnanometer channels in the Ti3C2Tx membranes enable cation-selective passage, assisted with tailored surface terminal groups, under salinity gradient. A record-high output power density of 21 W·m-2 at room temperature with an energy conversion efficiency of up to 40.6% is achieved by controlled surface charges at a 1000-fold salinity gradient. In addition, due to thermal regulation of surface charges and ionic mobility, the MXene membrane produces a large thermal enhancement at 331 K, yielding a power density of up to 54 W·m-2. The MXene lamellar structure, coupled with its scalability and chemical tunability, may be an important platform for high-performance osmotic power generators.
科研通智能强力驱动
Strongly Powered by AbleSci AI