Remote Patient Management in Peritoneal Dialysis: An Answer to an Unmet Clinical Need

医学 重症监护医学 腹膜透析 远程医疗 心理干预 医疗急救 药方 出勤 肾脏疾病 医疗保健 远程医疗 护理部 内科学 经济增长 经济
作者
Oommen John,Vivekanand Jha
出处
期刊:Contributions To Nephrology [Karger Publishers]
卷期号:: 99-112 被引量:13
标识
DOI:10.1159/000496305
摘要

The burden of chronic kidney disease is increasing globally. Novel methods for the management of end-stage kidney disease at home have been available for several years, however uptake of home peritoneal dialysis (PD) has been suboptimal for a variety of reasons. Non-adherence is an important factor that determines the outcomes of PD; patients on home dialysis are subject to feeling isolated and are anxious to lack of routine clinical oversight. When patients feel disconnected from their health care professionals, their compliance to medical advice drops and their confidence in self-care comes down. Remote patient management (RPM) has the potential to improve outcomes in PD through telehealth platforms that facilitate virtual clinical presence, enable patient-generated clinical documentation and feedback mechanism, and promote self-monitoring. Bi-directional communications between patients and clinicians provide an enabling environment for autonomy while being clinically monitored through a co-presence, resulting in collaborative care that could alleviate the anxiety of the patients about not being under the direct care of a physician. RPM enables the clinicians to closely monitor and detect early issues, provide feedback in real-time, and initiate early interventions such as prescription modifications and contextual clinical decision support. As the computational capabilities improve and clinical data are collated, machine learning and artificial intelligence algorithms would help detect patterns and predict impending complications such as fluid overload, heart failure or peritonitis, thereby allowing early detection and interventions to avoid hospitalizations. The technical framework and essential features for a RPM system in PD is outlined in this chapter.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
李小晴天完成签到 ,获得积分10
2秒前
llj发布了新的文献求助10
2秒前
2秒前
大黄完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
叶子完成签到 ,获得积分0
4秒前
5秒前
嘟嘟完成签到,获得积分10
5秒前
无极微光应助细心的安珊采纳,获得20
5秒前
香蕉觅云应助17采纳,获得10
5秒前
慢慢完成签到,获得积分10
5秒前
搜集达人应助内向灵凡采纳,获得10
6秒前
松山小吏发布了新的文献求助10
6秒前
大黄发布了新的文献求助30
6秒前
lk发布了新的文献求助10
6秒前
ccc发布了新的文献求助10
7秒前
hzs发布了新的文献求助10
7秒前
卷饼发布了新的文献求助10
7秒前
怡然的寻桃完成签到,获得积分20
7秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
9秒前
神经哈哈完成签到,获得积分10
9秒前
君临发布了新的文献求助10
9秒前
10秒前
慢慢发布了新的文献求助10
10秒前
11秒前
善学以致用应助ccc采纳,获得10
11秒前
阳阳完成签到,获得积分10
11秒前
xl完成签到 ,获得积分10
12秒前
求知的周发布了新的文献求助30
13秒前
meibeiwu关注了科研通微信公众号
13秒前
HZH发布了新的文献求助10
14秒前
小蘑菇完成签到 ,获得积分10
14秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5694761
求助须知:如何正确求助?哪些是违规求助? 5098681
关于积分的说明 15214483
捐赠科研通 4851292
什么是DOI,文献DOI怎么找? 2602253
邀请新用户注册赠送积分活动 1554141
关于科研通互助平台的介绍 1512049