亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system

天蓬 遥感 点云 随机森林 环境科学 生物量(生态学) 播种 数学 计算机科学 人工智能 农学 生态学 生物 地理
作者
Ning Lu,Jie Zhou,Zixu Han,Dong Li,Qiang Cao,Xia Yao,Yongchao Tian,Yan Zhu,Weixing Cao,Tao Cheng
出处
期刊:Plant Methods [Springer Nature]
卷期号:15 (1) 被引量:169
标识
DOI:10.1186/s13007-019-0402-3
摘要

Aboveground biomass (AGB) is a widely used agronomic parameter for characterizing crop growth status and predicting grain yield. The rapid and accurate estimation of AGB in a non-destructive way is useful for making informed decisions on precision crop management. Previous studies have investigated vegetation indices (VIs) and canopy height metrics derived from Unmanned Aerial Vehicle (UAV) data to estimate the AGB of various crops. However, the input variables were derived either from one type of data or from different sensors on board UAVs. Whether the combination of VIs and canopy height metrics derived from a single low-cost UAV system can improve the AGB estimation accuracy remains unclear. This study used a low-cost UAV system to acquire imagery at 30 m flight altitude at critical growth stages of wheat in Rugao of eastern China. The experiments were conducted in 2016 and 2017 and involved 36 field plots representing variations in cultivar, nitrogen fertilization level and sowing density. We evaluated the performance of VIs, canopy height metrics and their combination for AGB estimation in wheat with the stepwise multiple linear regression (SMLR) and three types of machine learning algorithms (support vector regression, SVR; extreme learning machine, ELM; random forest, RF).Our results demonstrated that the combination of VIs and canopy height metrics improved the estimation accuracy for AGB of wheat over the use of VIs or canopy height metrics alone. Specifically, RF performed the best among the SMLR and three machine learning algorithms regardless of using all the original variables or selected variables by the SMLR. The best accuracy (R2 = 0.78, RMSE = 1.34 t/ha, rRMSE = 28.98%) was obtained when applying RF to the combination of VIs and canopy height metrics.Our findings implied that an inexpensive approach consisting of the RF algorithm and the combination of RGB imagery and point cloud data derived from a low-cost UAV system at the consumer-grade level can be used to improve the accuracy of AGB estimation and have potential in the practical applications in the rapid estimation of other growth parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
坟里唱情歌完成签到 ,获得积分10
刚刚
Ghiocel完成签到,获得积分10
2秒前
Lsy完成签到,获得积分10
10秒前
SciGPT应助水心采纳,获得10
10秒前
香蕉觅云应助科研通管家采纳,获得10
11秒前
11秒前
nnnick完成签到,获得积分0
11秒前
13秒前
16秒前
19秒前
21秒前
22秒前
不安服饰发布了新的文献求助10
22秒前
八方面完成签到 ,获得积分10
22秒前
卡西法发布了新的文献求助10
26秒前
37秒前
38秒前
月亮之下完成签到 ,获得积分10
41秒前
小卒完成签到 ,获得积分10
45秒前
思源应助薛之谦采纳,获得10
47秒前
51秒前
glassman完成签到,获得积分10
54秒前
wendyw完成签到,获得积分10
57秒前
glassman发布了新的文献求助10
57秒前
小鱼完成签到 ,获得积分10
1分钟前
健忘的初翠完成签到,获得积分10
1分钟前
你好完成签到 ,获得积分10
1分钟前
深情安青应助fbpuf采纳,获得10
1分钟前
panisa鹅完成签到 ,获得积分10
1分钟前
orixero应助冬雪采纳,获得10
1分钟前
1分钟前
1分钟前
1分钟前
我是老大应助要减肥冰菱采纳,获得10
1分钟前
冬雪发布了新的文献求助10
1分钟前
康康发布了新的文献求助10
1分钟前
三土关注了科研通微信公众号
1分钟前
1分钟前
anthea发布了新的文献求助10
1分钟前
1分钟前
高分求助中
Natural History of Mantodea 螳螂的自然史 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Smith-Purcell Radiation 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3344077
求助须知:如何正确求助?哪些是违规求助? 2971136
关于积分的说明 8646595
捐赠科研通 2651377
什么是DOI,文献DOI怎么找? 1451711
科研通“疑难数据库(出版商)”最低求助积分说明 672250
邀请新用户注册赠送积分活动 661785