Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system

天蓬 遥感 点云 随机森林 环境科学 生物量(生态学) 播种 数学 计算机科学 人工智能 农学 生态学 生物 地理
作者
Ning Lu,Jie Zhou,Zixu Han,Dong Li,Qiang Cao,Xia Yao,Yongchao Tian,Yan Zhu,Weixing Cao,Tao Cheng
出处
期刊:Plant Methods [Springer Nature]
卷期号:15 (1) 被引量:169
标识
DOI:10.1186/s13007-019-0402-3
摘要

Aboveground biomass (AGB) is a widely used agronomic parameter for characterizing crop growth status and predicting grain yield. The rapid and accurate estimation of AGB in a non-destructive way is useful for making informed decisions on precision crop management. Previous studies have investigated vegetation indices (VIs) and canopy height metrics derived from Unmanned Aerial Vehicle (UAV) data to estimate the AGB of various crops. However, the input variables were derived either from one type of data or from different sensors on board UAVs. Whether the combination of VIs and canopy height metrics derived from a single low-cost UAV system can improve the AGB estimation accuracy remains unclear. This study used a low-cost UAV system to acquire imagery at 30 m flight altitude at critical growth stages of wheat in Rugao of eastern China. The experiments were conducted in 2016 and 2017 and involved 36 field plots representing variations in cultivar, nitrogen fertilization level and sowing density. We evaluated the performance of VIs, canopy height metrics and their combination for AGB estimation in wheat with the stepwise multiple linear regression (SMLR) and three types of machine learning algorithms (support vector regression, SVR; extreme learning machine, ELM; random forest, RF).Our results demonstrated that the combination of VIs and canopy height metrics improved the estimation accuracy for AGB of wheat over the use of VIs or canopy height metrics alone. Specifically, RF performed the best among the SMLR and three machine learning algorithms regardless of using all the original variables or selected variables by the SMLR. The best accuracy (R2 = 0.78, RMSE = 1.34 t/ha, rRMSE = 28.98%) was obtained when applying RF to the combination of VIs and canopy height metrics.Our findings implied that an inexpensive approach consisting of the RF algorithm and the combination of RGB imagery and point cloud data derived from a low-cost UAV system at the consumer-grade level can be used to improve the accuracy of AGB estimation and have potential in the practical applications in the rapid estimation of other growth parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
thousandlong发布了新的文献求助10
1秒前
完美世界应助艺玲采纳,获得10
1秒前
尘南浔完成签到 ,获得积分10
1秒前
月亮明星完成签到,获得积分10
1秒前
Jasper应助einuo采纳,获得10
2秒前
2秒前
3秒前
科研小bai完成签到,获得积分10
3秒前
深情安青应助韭菜盒子采纳,获得10
3秒前
3秒前
Akim应助科研小白采纳,获得10
4秒前
Eric完成签到,获得积分10
4秒前
4秒前
Keep完成签到,获得积分20
4秒前
坚定的诗双完成签到,获得积分10
4秒前
耍酷激光豆完成签到,获得积分10
4秒前
thousandlong完成签到,获得积分10
5秒前
充电宝应助Maestro_S采纳,获得10
5秒前
5秒前
5秒前
dusai完成签到,获得积分10
5秒前
棟仔超人发布了新的文献求助10
5秒前
5秒前
6秒前
派大星和海绵宝宝完成签到,获得积分10
6秒前
HYLynn完成签到,获得积分10
7秒前
赘婿应助芋泥螺蛳猫采纳,获得10
8秒前
renjiu完成签到,获得积分10
8秒前
8秒前
rrr完成签到,获得积分10
8秒前
JACK完成签到,获得积分10
9秒前
科研欣路完成签到,获得积分10
9秒前
勿庸完成签到,获得积分10
9秒前
9秒前
王乐多完成签到 ,获得积分10
9秒前
锅里有两条鱼完成签到 ,获得积分10
9秒前
10秒前
姚断天发布了新的文献求助10
10秒前
CBY发布了新的文献求助10
10秒前
庞洋发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740