Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system

天蓬 遥感 点云 随机森林 环境科学 生物量(生态学) 播种 数学 计算机科学 人工智能 农学 生态学 生物 地理
作者
Ning Lu,Jie Zhou,Zixu Han,Dong Li,Qiang Cao,Xia Yao,Yongchao Tian,Yan Zhu,Weixing Cao,Tao Cheng
出处
期刊:Plant Methods [BioMed Central]
卷期号:15 (1) 被引量:169
标识
DOI:10.1186/s13007-019-0402-3
摘要

Aboveground biomass (AGB) is a widely used agronomic parameter for characterizing crop growth status and predicting grain yield. The rapid and accurate estimation of AGB in a non-destructive way is useful for making informed decisions on precision crop management. Previous studies have investigated vegetation indices (VIs) and canopy height metrics derived from Unmanned Aerial Vehicle (UAV) data to estimate the AGB of various crops. However, the input variables were derived either from one type of data or from different sensors on board UAVs. Whether the combination of VIs and canopy height metrics derived from a single low-cost UAV system can improve the AGB estimation accuracy remains unclear. This study used a low-cost UAV system to acquire imagery at 30 m flight altitude at critical growth stages of wheat in Rugao of eastern China. The experiments were conducted in 2016 and 2017 and involved 36 field plots representing variations in cultivar, nitrogen fertilization level and sowing density. We evaluated the performance of VIs, canopy height metrics and their combination for AGB estimation in wheat with the stepwise multiple linear regression (SMLR) and three types of machine learning algorithms (support vector regression, SVR; extreme learning machine, ELM; random forest, RF).Our results demonstrated that the combination of VIs and canopy height metrics improved the estimation accuracy for AGB of wheat over the use of VIs or canopy height metrics alone. Specifically, RF performed the best among the SMLR and three machine learning algorithms regardless of using all the original variables or selected variables by the SMLR. The best accuracy (R2 = 0.78, RMSE = 1.34 t/ha, rRMSE = 28.98%) was obtained when applying RF to the combination of VIs and canopy height metrics.Our findings implied that an inexpensive approach consisting of the RF algorithm and the combination of RGB imagery and point cloud data derived from a low-cost UAV system at the consumer-grade level can be used to improve the accuracy of AGB estimation and have potential in the practical applications in the rapid estimation of other growth parameters.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhoutiantian发布了新的文献求助10
2秒前
2秒前
聪明水之发布了新的文献求助10
3秒前
4秒前
李建行发布了新的文献求助10
6秒前
JamesPei应助科研小白鼠采纳,获得30
7秒前
aa1212121完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
7秒前
FYm发布了新的文献求助10
8秒前
8秒前
10秒前
JamesPei应助清爽玉米采纳,获得10
10秒前
Junsir完成签到,获得积分10
11秒前
孙勇发完成签到,获得积分10
11秒前
ED应助俊藏星河采纳,获得10
12秒前
12秒前
赘婿应助夕照古风采纳,获得10
12秒前
13秒前
13秒前
FYm完成签到,获得积分10
13秒前
平淡冬亦完成签到 ,获得积分10
16秒前
Hexagram发布了新的文献求助10
17秒前
安ananan羽发布了新的文献求助30
18秒前
18秒前
Xiang完成签到,获得积分10
19秒前
19秒前
zz发布了新的文献求助10
19秒前
20秒前
20秒前
CAOHOU应助SeTen采纳,获得10
20秒前
李爱国应助许你星光熠采纳,获得10
21秒前
21秒前
柒啊柒la完成签到,获得积分10
21秒前
22秒前
苏小寰发布了新的文献求助10
23秒前
杨123发布了新的文献求助10
23秒前
24秒前
隐形曼青应助kyJYbs采纳,获得10
24秒前
夕照古风发布了新的文献求助10
24秒前
cherish完成签到,获得积分10
24秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979896
求助须知:如何正确求助?哪些是违规求助? 3523949
关于积分的说明 11219166
捐赠科研通 3261387
什么是DOI,文献DOI怎么找? 1800629
邀请新用户注册赠送积分活动 879209
科研通“疑难数据库(出版商)”最低求助积分说明 807202