Diagnostic accuracy of the Geriatric Depression Scale-30, Geriatric Depression Scale-15, Geriatric Depression Scale-5 and Geriatric Depression Scale-4 for detecting major depression: protocol for a systematic review and individual participant data meta-analysis

萧条(经济学) 老人忧郁量表 医学 比例(比率) 精神科 老年病科 协议(科学) 老年精神病学 老年学 抑郁症状 替代医学 认知 病理 经济 宏观经济学 物理 量子力学
作者
Andrea Benedetti,Yin Wu,Brooke Levis,Machelle Wilchesky,Jill Boruff,John P. A. Ioannidis,Scott B. Patten,Pim Cuijpers,Ian Shrier,Simon Gilbody,Zahinoor Ismail,Dean McMillan,Nicholas Mitchell,Roy C. Ziegelstein,Brett D. Thombs
出处
期刊:BMJ Open [BMJ]
卷期号:8 (12): e026598-e026598 被引量:41
标识
DOI:10.1136/bmjopen-2018-026598
摘要

The 30-item Geriatric Depression Scale (GDS-30) and the shorter GDS-15, GDS-5 and GDS-4 are recommended as depression screening tools for elderly individuals. Existing meta-analyses on the diagnostic accuracy of the GDS have not been able to conduct subgroup analyses, have included patients already identified as depressed who would not be screened in practice and have not accounted for possible bias due to selective reporting of results from only better-performing cut-offs in primary studies. Individual participant data meta-analysis (IPDMA), which involves a standard systematic review, then a synthesis of individual participant data, rather than summary results, could address these limitations. The objective of our IPDMA is to generate accuracy estimates to detect major depression for all possible cut-offs of each version of the GDS among studies using different reference standards, separately and among participant subgroups based on age, sex, dementia diagnosis and care settings. In addition, we will use a modelling approach to generate individual participant probabilities for major depression based on GDS scores (rather than a dichotomous cut-off) and participant characteristics (eg, sex, age, dementia status, care setting).Individual participant data comparing GDS scores to a major depression diagnosis based on a validated structured or semistructured diagnostic interview will be sought via a systematic review. Data sources will include Medline, Medline In-Process & Other Non-Indexed Citations, PsycINFO and Web of Science. Bivariate random-effects models will be used to estimate diagnostic accuracy parameters for each cut-off of the different versions of the GDS. Prespecified subgroup analyses will be conducted. Risk of bias will be assessed with the Quality Assessment of Diagnostic Accuracy Studies-2 tool.The findings of this study will be of interest to stakeholders involved in research, clinical practice and policy.CRD42018104329.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
希望天下0贩的0应助Panda采纳,获得10
2秒前
Yan完成签到,获得积分10
2秒前
呵呵发布了新的文献求助10
3秒前
安殿夏关注了科研通微信公众号
4秒前
4秒前
静汉发布了新的文献求助10
5秒前
英姑应助犹豫的若采纳,获得10
5秒前
5秒前
随机发布了新的文献求助10
5秒前
在水一方应助现实的南烟采纳,获得10
6秒前
6秒前
棒棒糖完成签到,获得积分20
7秒前
张凤发布了新的文献求助10
7秒前
8秒前
tina发布了新的文献求助10
8秒前
默读发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
妮妮爱smile完成签到,获得积分10
13秒前
今后应助静汉采纳,获得10
14秒前
lrx完成签到,获得积分20
14秒前
科研通AI5应助tina采纳,获得10
17秒前
18秒前
18秒前
你在教我做事啊完成签到 ,获得积分10
20秒前
wen发布了新的文献求助50
21秒前
22秒前
23秒前
小二郎应助琳琳采纳,获得10
23秒前
犹豫的若发布了新的文献求助10
24秒前
123发布了新的文献求助10
24秒前
梅梅超勇敢完成签到 ,获得积分10
26秒前
Jiatu_Li完成签到,获得积分10
27秒前
27秒前
28秒前
28秒前
科研通AI5应助见青山采纳,获得10
29秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3741086
求助须知:如何正确求助?哪些是违规求助? 3283852
关于积分的说明 10037232
捐赠科研通 3000684
什么是DOI,文献DOI怎么找? 1646647
邀请新用户注册赠送积分活动 783858
科研通“疑难数据库(出版商)”最低求助积分说明 750442