Robust Minimum-Cost Flow Problems Under Multiple Ripple Effect Disruptions

数学优化 线性规划 整数规划 稳健优化 最小成本流问题 流量(数学) 集合(抽象数据类型) 数学 可行区 一般化 计算机科学 流量网络 数学分析 几何学 程序设计语言
作者
Mehdi Ansari,Juan S. Borrero,Leonardo Lozano
出处
期刊:Informs Journal on Computing 卷期号:35 (1): 83-103 被引量:5
标识
DOI:10.1287/ijoc.2022.1243
摘要

We study a class of adversarial minimum-cost flow problems where the arcs are subject to multiple ripple effect disruptions that increase their usage cost. The locations of the disruptions’ epicenters are uncertain, and the decision maker seeks a flow that minimizes cost assuming the worst-case realization of the disruptions. We evaluate the damage to each arc using a linear model, where the damage is the cumulative damage of all disruptions affecting the arc; and a maximum model, where the damage is given by the most destructive disruption affecting the arc. For both models, the arcs’ costs after disruptions are represented with a mixed-integer feasible region, resulting in a robust optimization problem with a mixed-integer uncertainty set. The main challenge to solve the problem comes from a subproblem that evaluates the worst-case cost for a given flow plan. We show that for the linear model the uncertainty set can be decomposed into a series of single disruption problems, which leads to a polynomial time algorithm for the subproblem. The uncertainty set of the maximum model, however, cannot be decomposed, and we show that the subproblem under this model is NP-hard. For this case, we further present a big-M free binary reformulation of the uncertainty set based on conflict constraints that results in a significantly smaller formulation with tighter linear programming relaxations. We extend the models by considering a less conservative approach where only a subset of the disruptions can occur and show that the properties of the linear and maximum models also hold in this case. We test our proposed approaches over real road networks and synthetics instances and show that our methods achieve orders of magnitude improvements over a standard approach from the literature. History: Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. Funding: This work was supported by the Air Force Office of Scientific Research [Grant FA9550-22-1-0236] and the Office of Naval Research [Grant N00014-19-1-2329]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/ijoc.2022.1243 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
心灵美的修洁完成签到 ,获得积分10
刚刚
lzd完成签到,获得积分10
2秒前
3秒前
诸笑白发布了新的文献求助10
5秒前
5秒前
研友_LOK59L完成签到,获得积分10
7秒前
七子完成签到 ,获得积分10
8秒前
郑盼秋完成签到,获得积分10
8秒前
youjiang发布了新的文献求助10
9秒前
11秒前
孤独收割人完成签到,获得积分10
11秒前
星辰坠于海应助丰盛的煎饼采纳,获得666
13秒前
Upupcc发布了新的文献求助10
15秒前
15秒前
勤劳落雁发布了新的文献求助10
16秒前
16秒前
16秒前
17秒前
17秒前
17秒前
周周发布了新的文献求助10
17秒前
18秒前
科研通AI5应助解青文采纳,获得10
18秒前
科研通AI5应助魏伯安采纳,获得30
18秒前
nekoneko完成签到,获得积分10
21秒前
21秒前
22秒前
帅关发布了新的文献求助10
22秒前
yyyyy语言发布了新的文献求助10
23秒前
asheng98完成签到 ,获得积分10
24秒前
Chen完成签到,获得积分10
24秒前
慕青应助guajiguaji采纳,获得10
25秒前
圣晟胜发布了新的文献求助10
26秒前
26秒前
26秒前
不会失忆完成签到,获得积分10
28秒前
思源应助路边一颗小草采纳,获得10
28秒前
上官若男应助帅关采纳,获得10
29秒前
qin完成签到,获得积分10
30秒前
30秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3528020
求助须知:如何正确求助?哪些是违规求助? 3108260
关于积分的说明 9288139
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540202
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849