已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Robust Minimum-Cost Flow Problems Under Multiple Ripple Effect Disruptions

数学优化 线性规划 整数规划 稳健优化 最小成本流问题 流量(数学) 集合(抽象数据类型) 数学 可行区 一般化 计算机科学 流量网络 数学分析 几何学 程序设计语言
作者
Mehdi Ansari,Juan S. Borrero,Leonardo Lozano
出处
期刊:Informs Journal on Computing 卷期号:35 (1): 83-103 被引量:5
标识
DOI:10.1287/ijoc.2022.1243
摘要

We study a class of adversarial minimum-cost flow problems where the arcs are subject to multiple ripple effect disruptions that increase their usage cost. The locations of the disruptions’ epicenters are uncertain, and the decision maker seeks a flow that minimizes cost assuming the worst-case realization of the disruptions. We evaluate the damage to each arc using a linear model, where the damage is the cumulative damage of all disruptions affecting the arc; and a maximum model, where the damage is given by the most destructive disruption affecting the arc. For both models, the arcs’ costs after disruptions are represented with a mixed-integer feasible region, resulting in a robust optimization problem with a mixed-integer uncertainty set. The main challenge to solve the problem comes from a subproblem that evaluates the worst-case cost for a given flow plan. We show that for the linear model the uncertainty set can be decomposed into a series of single disruption problems, which leads to a polynomial time algorithm for the subproblem. The uncertainty set of the maximum model, however, cannot be decomposed, and we show that the subproblem under this model is NP-hard. For this case, we further present a big-M free binary reformulation of the uncertainty set based on conflict constraints that results in a significantly smaller formulation with tighter linear programming relaxations. We extend the models by considering a less conservative approach where only a subset of the disruptions can occur and show that the properties of the linear and maximum models also hold in this case. We test our proposed approaches over real road networks and synthetics instances and show that our methods achieve orders of magnitude improvements over a standard approach from the literature. History: Andrea Lodi, Area Editor for Design & Analysis of Algorithms–Discrete. Funding: This work was supported by the Air Force Office of Scientific Research [Grant FA9550-22-1-0236] and the Office of Naval Research [Grant N00014-19-1-2329]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/ijoc.2022.1243 .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
山人踏足发布了新的文献求助10
刚刚
kami完成签到 ,获得积分10
1秒前
lamei发布了新的文献求助10
1秒前
weng发布了新的文献求助10
2秒前
archer01发布了新的文献求助10
3秒前
5秒前
健忘丹珍完成签到 ,获得积分10
5秒前
奥黛丽悟空完成签到,获得积分10
5秒前
胡壮壮完成签到,获得积分10
6秒前
lyy66964193完成签到,获得积分10
8秒前
山人踏足完成签到,获得积分10
8秒前
9秒前
酷波er应助zwhy采纳,获得10
12秒前
13秒前
科研通AI2S应助zhang_23采纳,获得10
15秒前
开心的野狼完成签到 ,获得积分10
16秒前
16秒前
Survivor发布了新的文献求助10
16秒前
lamei完成签到,获得积分10
17秒前
17秒前
kong心cai完成签到 ,获得积分10
18秒前
zzmm发布了新的文献求助30
21秒前
21秒前
Sevendesu应助小薛爱吃肉采纳,获得10
22秒前
科研通AI2S应助小薛爱吃肉采纳,获得10
22秒前
大模型应助小薛爱吃肉采纳,获得10
22秒前
dengx1应助科研通管家采纳,获得10
22秒前
打打应助科研通管家采纳,获得10
22秒前
嗯哼应助科研通管家采纳,获得20
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
Ava应助科研通管家采纳,获得10
22秒前
所所应助科研通管家采纳,获得10
22秒前
乐乐应助科研通管家采纳,获得10
22秒前
JamesPei应助lamei采纳,获得10
23秒前
尘南浔完成签到 ,获得积分10
23秒前
23秒前
士成发布了新的文献求助10
23秒前
快了科研发布了新的文献求助20
24秒前
元谷雪应助jisimyang98采纳,获得10
24秒前
lanshuitai发布了新的文献求助10
25秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 830
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3248577
求助须知:如何正确求助?哪些是违规求助? 2892044
关于积分的说明 8269571
捐赠科研通 2560135
什么是DOI,文献DOI怎么找? 1388854
科研通“疑难数据库(出版商)”最低求助积分说明 650918
邀请新用户注册赠送积分活动 627798