控制理论(社会学)
稳健性(进化)
沉降时间
人工神经网络
计算机科学
控制工程
PID控制器
电子速度控制
永磁同步电动机
电枢(电气工程)
同步电动机
机器控制
病媒控制
磁铁
工程类
电压
人工智能
感应电动机
温度控制
控制(管理)
阶跃响应
机械工程
生物化学
化学
电气工程
基因
作者
Armita Fatemimoghadam,Yan Ye,K. Lakshmi Varaha Iyer,Narayan C. Kar
标识
DOI:10.1109/icem51905.2022.9910710
摘要
This paper presents a novel artificial intelligence-based approach for the permanent magnet synchronous machine (PMSM) current and speed control using deep neural networks (DNN). Motor parameters change due to the factors such as temperature, magnetic saturation and armature reaction. The need for such a controller arises since conventional proportional integral (PI) controllers do not perform optimally during such variations. Moreover, today's enhanced controller hardware enables the implementation of such control techniques. This paper evaluates the performance and robustness of the proposed DNN based controllers when the motor parameters and load vary. The simulation results compare the performance of both conventional PI controllers and the proposed DNN based controllers. The simulation results show that the proposed DNN based controllers can outperform conventional PI controllers in terms of settling time, dynamic response, and robustness to parameter variations.
科研通智能强力驱动
Strongly Powered by AbleSci AI