Machine Learning From Quantitative Coronary Computed Tomography Angiography Predicts Fractional Flow Reserve–Defined Ischemia and Impaired Myocardial Blood Flow

部分流量储备 医学 计算机断层血管造影 心肌缺血 缺血 血流 血管造影 心脏病学 放射科 计算机断层摄影术 内科学 心肌梗塞 冠状动脉造影
作者
Andrew Lin,Pepijn A. van Diemen,Manish Motwani,Priscilla McElhinney,Yuka Otaki,Donghee Han,Alan C. Kwan,Evangelos Tzolos,Eyal Klein,Keiichiro Kuronuma,Kajetan Grodecki,Benjamin L. Shou,Richard Ríos,Nipun Manral,Sebastien Cadet,Ibrahim Danad,Roel S. Driessen,Daniel S. Berman,Bjarne Linde Nørgaard,Piotr J. Slomka,Paul Knaapen,Damini Dey
出处
期刊:Circulation-cardiovascular Imaging [Lippincott Williams & Wilkins]
卷期号:15 (10) 被引量:17
标识
DOI:10.1161/circimaging.122.014369
摘要

Background: A pathophysiological interplay exists between plaque morphology and coronary physiology. Machine learning (ML) is increasingly being applied to coronary computed tomography angiography (CCTA) for cardiovascular risk stratification. We sought to assess the performance of a ML score integrating CCTA-based quantitative plaque features for predicting vessel-specific ischemia by invasive fractional flow reserve (FFR) and impaired myocardial blood flow (MBF) by positron emission tomography (PET). Methods: This post-hoc analysis of the PACIFIC trial (Prospective Comparison of Cardiac Positron Emission Tomography/Computed Tomography [CT]‚ Single Photon Emission Computed Tomography/CT Perfusion Imaging and CT Coronary Angiography with Invasive Coronary Angiography) included 208 patients with suspected coronary artery disease who prospectively underwent CCTA‚ [ 15 O]H 2 O PET, and invasive FFR. Plaque quantification from CCTA was performed using semiautomated software. An ML algorithm trained on the prospective NXT trial (484 vessels) was used to develop a ML score for the prediction of ischemia (FFR≤0.80), which was then evaluated in 581 vessels from the PACIFIC trial. Thereafter, the ML score was applied for predicting impaired hyperemic MBF (≤2.30 mL/min per g) from corresponding PET scans. The performance of the ML score was compared with CCTA reads and noninvasive FFR derived from CCTA (FFR CT ). Results: One hundred thirty-nine (23.9%) vessels had FFR-defined ischemia, and 195 (33.6%) vessels had impaired hyperemic MBF. For the prediction of FFR-defined ischemia, the ML score yielded an area under the receiver-operating characteristic curve of 0.92, which was significantly higher than that of visual stenosis grade (0.84; P <0.001) and comparable with that of FFR CT (0.93; P =0.34). Quantitative percent diameter stenosis and low-density noncalcified plaque volume had the greatest ML feature importance for predicting FFR-defined ischemia. When applied for impaired MBF prediction, the ML score exhibited an area under the receiver-operating characteristic curve of 0.80; significantly higher than visual stenosis grade (area under the receiver-operating characteristic curve 0.74; P =0.02) and comparable with FFR CT (area under the receiver-operating characteristic curve 0.77; P =0.16). Conclusions: An externally validated ML score integrating CCTA-based quantitative plaque features accurately predicts FFR-defined ischemia and impaired MBF by PET, performing superiorly to standard CCTA stenosis evaluation and comparably to FFR CT .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
安全平静完成签到,获得积分10
刚刚
惊蛰时分听春雷完成签到,获得积分10
1秒前
柠檬百香果完成签到,获得积分10
1秒前
1秒前
Welcome发布了新的文献求助10
1秒前
zxh发布了新的文献求助10
2秒前
2秒前
好好学习完成签到,获得积分10
2秒前
Peter完成签到,获得积分20
3秒前
热情奇异果完成签到,获得积分20
3秒前
菠萝橙子完成签到,获得积分10
4秒前
钻石DrWang完成签到 ,获得积分10
4秒前
洽洽瓜子shine完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
永不言弃完成签到 ,获得积分10
5秒前
wbero发布了新的文献求助10
5秒前
Bran完成签到,获得积分10
6秒前
Ran完成签到 ,获得积分10
6秒前
gzsy发布了新的文献求助10
6秒前
浮熙完成签到 ,获得积分10
7秒前
多亿点完成签到 ,获得积分10
8秒前
大模型应助马伟杰采纳,获得10
8秒前
灰灰成长中完成签到,获得积分10
8秒前
阿萨德完成签到,获得积分10
8秒前
tree完成签到,获得积分10
9秒前
左丘忻完成签到,获得积分10
9秒前
10秒前
侠医2012完成签到,获得积分0
10秒前
害羞采萱完成签到,获得积分10
10秒前
wbero完成签到,获得积分10
11秒前
11秒前
mr.pork完成签到,获得积分10
12秒前
Derek0203完成签到,获得积分10
12秒前
顺利兰完成签到 ,获得积分10
13秒前
14秒前
李解万岁完成签到,获得积分10
14秒前
Inter09完成签到,获得积分10
15秒前
陈艺鹏完成签到,获得积分10
16秒前
Zero完成签到,获得积分10
17秒前
steven完成签到 ,获得积分10
17秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4009044
求助须知:如何正确求助?哪些是违规求助? 3548827
关于积分的说明 11300025
捐赠科研通 3283345
什么是DOI,文献DOI怎么找? 1810345
邀请新用户注册赠送积分活动 886115
科研通“疑难数据库(出版商)”最低求助积分说明 811259