Semi-Supervised Multiscale Dynamic Graph Convolution Network for Hyperspectral Image Classification

高光谱成像 模式识别(心理学) 像素 人工智能 计算机科学 图形 邻接矩阵 邻接表 分类器(UML) 卷积神经网络 卷积(计算机科学) 分割 算法 人工神经网络 理论计算机科学
作者
Yuqun Yang,Xu Tang,Xiangrong Zhang,Jingjing Ma,Fang Liu,Xiuping Jia,Licheng Jiao
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:35 (5): 6806-6820 被引量:44
标识
DOI:10.1109/tnnls.2022.3212985
摘要

In recent years, convolutional neural networks (CNNs)-based methods achieve cracking performance on hyperspectral image (HSI) classification tasks, due to its hierarchical structure and strong nonlinear fitting capacity. Most of them, however, are supervised approaches that need a large number of labeled data to train them. Conventional convolution kernels are fixed shape of rectangular with fixed sizes, which are good at capturing short-range relations between pixels within HSIs but ignore the long-range context within HSIs, limiting their performance. To overcome the limitations mentioned above, we present a dynamic multiscale graph convolutional network (GCN) classifier (DMSGer). DMSGer first constructs a relatively small graph at region-level based on a superpixel segmentation algorithm and metric-learning. A dynamic pixel-level feature update strategy is then applied to the region-level adjacency matrix, which can help DMSGer learn the pixel representation dynamically. Finally, to deeply understand the complex contents within HSIs, our model is expanded into a multiscale version. On the one hand, by introducing graph learning theory, DMSGer accomplishes HSI classification tasks in a semi-supervised manner, relieving the pressure of collecting abundant labeled samples. Superpixels are generally in irregular shapes and sizes which can group only similar pixels in a neighborhood. On the other hand, based on the proposed dynamic-GCN, the pixel-level and region-level information can be captured simultaneously in one graph convolution layer such that the classification results can be improved. Also, due to the proper multiscale expansion, more helpful information can be captured from HSIs. Extensive experiments were conducted on four public HSIs, and the promising results illustrate that our DMSGer is robust in classifying HSIs. Our source codes are available at https://github.com/TangXu-Group/DMSGer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
要减肥南霜完成签到 ,获得积分10
刚刚
梧桐雨210完成签到 ,获得积分10
1秒前
勤奋的冷之完成签到,获得积分10
1秒前
木通完成签到,获得积分10
1秒前
长风完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
小灵通完成签到,获得积分10
4秒前
LeungYM发布了新的文献求助30
4秒前
4秒前
HXia发布了新的文献求助10
4秒前
5秒前
李爱国应助学勾巴采纳,获得10
5秒前
5秒前
dyk发布了新的文献求助10
6秒前
飞天企鹅发布了新的文献求助10
6秒前
科研老头发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
活力香菇发布了新的文献求助10
8秒前
melody完成签到 ,获得积分20
8秒前
9秒前
紫萱发布了新的文献求助10
9秒前
柠木完成签到,获得积分10
9秒前
HM完成签到,获得积分10
9秒前
墨蓝色发布了新的文献求助10
9秒前
10秒前
10秒前
Songlin完成签到 ,获得积分10
10秒前
命运的X号完成签到,获得积分10
10秒前
10秒前
Survivor完成签到,获得积分10
11秒前
zq1992nl发布了新的文献求助10
11秒前
上官若男应助sjfczyh采纳,获得10
12秒前
利利是是完成签到,获得积分10
12秒前
借两颗星星完成签到 ,获得积分10
13秒前
丹丹发布了新的文献求助30
14秒前
ivyjianjie发布了新的文献求助10
14秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663010
求助须知:如何正确求助?哪些是违规求助? 3223738
关于积分的说明 9753126
捐赠科研通 2933645
什么是DOI,文献DOI怎么找? 1606294
邀请新用户注册赠送积分活动 758404
科研通“疑难数据库(出版商)”最低求助积分说明 734792