An efficient medical image compression technique for telemedicine systems

远程医疗 计算机科学 图像压缩 图像(数学) 计算机视觉 压缩(物理) 人工智能 图像处理 医疗保健 材料科学 复合材料 经济增长 经济
作者
R. Monika,Samiappan Dhanalakshmi
出处
期刊:Biomedical Signal Processing and Control [Elsevier BV]
卷期号:80: 104404-104404 被引量:12
标识
DOI:10.1016/j.bspc.2022.104404
摘要

The medical practitioners primarily used medical images to reveal abnormalities in the internal critical organs and structures of body covered by the bones and the skin. Main application of medical imaging is to perform medical diagnosis from the image features extracted. Processing these images are very much required for assessing the patient’s condition. However, long-term monitoring of the patient using certain medical imaging technologies produces enormous volumes of data everyday. There is a need to compress the data to reduce redundancies and speed up the acquisition process, making them suitable for efficient transmission and analysis. Recently Compressed Sensing (CS) has been widely used for image compression at high speed with fewer samples. High-quality reconstruction using conventional CS and Block based CS (BCS) is a matter of utmost concern as they follow the random selection of samples. This could be overcome by adaptively selecting samples from various image regions using Adaptive Block Compressed Sensing (ABCS). This paper proposes Coefficient Mixed Thresholding based ABCS (CMT-ABCS) for compressing different medical images with a high compression ratio. The experimental outcomes exhibit a noteworthy improvement in the proposed method’s performance metrics when compared to other state-of-the-art approaches. There is a increase in PSNR of 5–10 dB, SSIM of 0.1–0.2 with NCC values closer to 1 and NAE values closer to 0. At low sampling rate, the reconstruction was greatly enhanced with only around 10% measurements/samples. • Reconstructs entire image with only 10% of samples. • Coefficient mixed thresholding involves simple calculation procedures. • Achieves 40%–70% of compression. • Significant improvement in image quality measures like PSNR, SSIM, NCC and NAE. • Blocking artifacts and improper block reconstruction are eliminated completely. • Remarkable quality improvement is noticed even at low sampling rate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dy完成签到,获得积分10
刚刚
CipherSage应助韦炳甜采纳,获得10
1秒前
量子星尘发布了新的文献求助10
1秒前
头大完成签到,获得积分10
1秒前
冷泠发布了新的文献求助10
1秒前
王先生完成签到,获得积分10
1秒前
白衣修身完成签到,获得积分10
1秒前
good233完成签到,获得积分10
2秒前
粗犷的沛容应助壮观采文采纳,获得10
2秒前
3秒前
hanyingwang完成签到,获得积分10
3秒前
qq158014169完成签到,获得积分10
3秒前
犹豫的初丹完成签到,获得积分10
4秒前
萧然完成签到,获得积分10
4秒前
南宫映榕完成签到,获得积分10
4秒前
5秒前
Kiosta完成签到,获得积分10
5秒前
5秒前
凶狠的映菱完成签到,获得积分10
6秒前
凉雨渲完成签到,获得积分10
6秒前
澳大利亚完成签到,获得积分10
6秒前
我我我发布了新的文献求助10
7秒前
7秒前
jeff完成签到,获得积分10
7秒前
8秒前
田様应助Lgumsi采纳,获得10
8秒前
9秒前
阳光的雪珊完成签到 ,获得积分10
9秒前
聪明映菡发布了新的文献求助30
9秒前
小怪兽完成签到,获得积分10
10秒前
10秒前
Kiosta发布了新的文献求助10
10秒前
Lucas应助凶狠的映菱采纳,获得10
11秒前
11秒前
ding应助尘尘笑采纳,获得10
11秒前
无语的凡梦完成签到,获得积分10
11秒前
12秒前
传统的松鼠完成签到 ,获得积分10
12秒前
哭泣又柔发布了新的文献求助10
12秒前
隐形的大有完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
“Now I Have My Own Key”: The Impact of Housing Stability on Recovery and Recidivism Reduction Using a Recovery Capital Framework 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5009518
求助须知:如何正确求助?哪些是违规求助? 4251634
关于积分的说明 13246493
捐赠科研通 4053100
什么是DOI,文献DOI怎么找? 2217170
邀请新用户注册赠送积分活动 1226902
关于科研通互助平台的介绍 1148857