An efficient medical image compression technique for telemedicine systems

远程医疗 计算机科学 图像压缩 图像(数学) 计算机视觉 压缩(物理) 人工智能 图像处理 医疗保健 材料科学 复合材料 经济增长 经济
作者
R. Monika,Samiappan Dhanalakshmi
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:80: 104404-104404 被引量:12
标识
DOI:10.1016/j.bspc.2022.104404
摘要

The medical practitioners primarily used medical images to reveal abnormalities in the internal critical organs and structures of body covered by the bones and the skin. Main application of medical imaging is to perform medical diagnosis from the image features extracted. Processing these images are very much required for assessing the patient’s condition. However, long-term monitoring of the patient using certain medical imaging technologies produces enormous volumes of data everyday. There is a need to compress the data to reduce redundancies and speed up the acquisition process, making them suitable for efficient transmission and analysis. Recently Compressed Sensing (CS) has been widely used for image compression at high speed with fewer samples. High-quality reconstruction using conventional CS and Block based CS (BCS) is a matter of utmost concern as they follow the random selection of samples. This could be overcome by adaptively selecting samples from various image regions using Adaptive Block Compressed Sensing (ABCS). This paper proposes Coefficient Mixed Thresholding based ABCS (CMT-ABCS) for compressing different medical images with a high compression ratio. The experimental outcomes exhibit a noteworthy improvement in the proposed method’s performance metrics when compared to other state-of-the-art approaches. There is a increase in PSNR of 5–10 dB, SSIM of 0.1–0.2 with NCC values closer to 1 and NAE values closer to 0. At low sampling rate, the reconstruction was greatly enhanced with only around 10% measurements/samples. • Reconstructs entire image with only 10% of samples. • Coefficient mixed thresholding involves simple calculation procedures. • Achieves 40%–70% of compression. • Significant improvement in image quality measures like PSNR, SSIM, NCC and NAE. • Blocking artifacts and improper block reconstruction are eliminated completely. • Remarkable quality improvement is noticed even at low sampling rate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Karma发布了新的文献求助10
1秒前
shunshun51213完成签到,获得积分10
1秒前
1秒前
所所应助你怎么睡得着觉采纳,获得10
1秒前
领导范儿应助多金多金采纳,获得10
2秒前
小文完成签到,获得积分10
2秒前
RAFA发布了新的文献求助10
3秒前
bin_yao完成签到,获得积分10
3秒前
3秒前
xr发布了新的文献求助10
3秒前
李子恒发布了新的文献求助10
3秒前
寒生完成签到,获得积分10
4秒前
黄雨淋完成签到,获得积分10
5秒前
DuanYou完成签到,获得积分10
5秒前
6秒前
Criminology34应助ccc采纳,获得10
6秒前
大模型应助謓言采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
无奈的晴发布了新的文献求助10
7秒前
8秒前
量子星尘发布了新的文献求助10
10秒前
当年明月发布了新的文献求助10
11秒前
13秒前
13秒前
F1t272发布了新的文献求助10
13秒前
鹿c3完成签到,获得积分10
14秒前
无奈的晴完成签到,获得积分10
14秒前
YY完成签到,获得积分10
15秒前
BowieHuang应助ddw采纳,获得10
16秒前
柒零七发布了新的文献求助10
16秒前
fx发布了新的文献求助10
17秒前
猪猪hero应助科研通管家采纳,获得10
17秒前
猪猪hero应助科研通管家采纳,获得10
17秒前
猪猪hero应助科研通管家采纳,获得10
17秒前
17秒前
顾矜应助科研通管家采纳,获得10
17秒前
猪猪hero应助科研通管家采纳,获得10
17秒前
猪猪hero应助科研通管家采纳,获得10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
the Oxford Guide to the Bantu Languages 3000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5761761
求助须知:如何正确求助?哪些是违规求助? 5531887
关于积分的说明 15400675
捐赠科研通 4897994
什么是DOI,文献DOI怎么找? 2634640
邀请新用户注册赠送积分活动 1582800
关于科研通互助平台的介绍 1538049