An efficient medical image compression technique for telemedicine systems

远程医疗 计算机科学 图像压缩 图像(数学) 计算机视觉 压缩(物理) 人工智能 图像处理 医疗保健 材料科学 复合材料 经济增长 经济
作者
R. Monika,Samiappan Dhanalakshmi
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:80: 104404-104404 被引量:12
标识
DOI:10.1016/j.bspc.2022.104404
摘要

The medical practitioners primarily used medical images to reveal abnormalities in the internal critical organs and structures of body covered by the bones and the skin. Main application of medical imaging is to perform medical diagnosis from the image features extracted. Processing these images are very much required for assessing the patient’s condition. However, long-term monitoring of the patient using certain medical imaging technologies produces enormous volumes of data everyday. There is a need to compress the data to reduce redundancies and speed up the acquisition process, making them suitable for efficient transmission and analysis. Recently Compressed Sensing (CS) has been widely used for image compression at high speed with fewer samples. High-quality reconstruction using conventional CS and Block based CS (BCS) is a matter of utmost concern as they follow the random selection of samples. This could be overcome by adaptively selecting samples from various image regions using Adaptive Block Compressed Sensing (ABCS). This paper proposes Coefficient Mixed Thresholding based ABCS (CMT-ABCS) for compressing different medical images with a high compression ratio. The experimental outcomes exhibit a noteworthy improvement in the proposed method’s performance metrics when compared to other state-of-the-art approaches. There is a increase in PSNR of 5–10 dB, SSIM of 0.1–0.2 with NCC values closer to 1 and NAE values closer to 0. At low sampling rate, the reconstruction was greatly enhanced with only around 10% measurements/samples. • Reconstructs entire image with only 10% of samples. • Coefficient mixed thresholding involves simple calculation procedures. • Achieves 40%–70% of compression. • Significant improvement in image quality measures like PSNR, SSIM, NCC and NAE. • Blocking artifacts and improper block reconstruction are eliminated completely. • Remarkable quality improvement is noticed even at low sampling rate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yujian发布了新的文献求助10
刚刚
刚刚
酷炫夜白完成签到,获得积分10
1秒前
2秒前
CipherSage应助一一采纳,获得30
3秒前
zzzzzzz发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
嘿嘿发布了新的文献求助10
6秒前
隐形曼青应助老迟到的澜采纳,获得10
7秒前
7秒前
英俊的铭应助派123采纳,获得10
9秒前
完美世界应助一颗竹笋采纳,获得10
9秒前
FU完成签到,获得积分20
10秒前
11秒前
11秒前
韩浩男发布了新的文献求助10
11秒前
酷炫风华完成签到 ,获得积分10
13秒前
CodeCraft应助刻苦大门采纳,获得10
13秒前
14秒前
mumumu完成签到,获得积分10
14秒前
海岸完成签到,获得积分10
15秒前
一一发布了新的文献求助30
17秒前
绾绾完成签到 ,获得积分10
18秒前
007完成签到,获得积分10
19秒前
cindy完成签到 ,获得积分10
19秒前
wml应助Cyz采纳,获得10
20秒前
22秒前
斯文败类应助胡拉拉采纳,获得10
23秒前
Duke_ethan完成签到,获得积分10
24秒前
yang完成签到 ,获得积分10
24秒前
24秒前
24秒前
joe发布了新的文献求助10
25秒前
bkagyin应助xx采纳,获得10
25秒前
大个应助老干部采纳,获得10
26秒前
hymmm完成签到,获得积分10
26秒前
26秒前
28秒前
Return应助悄悄采纳,获得10
29秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Superabsorbent Polymers 600
Handbook of Migration, International Relations and Security in Asia 555
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5679748
求助须知:如何正确求助?哪些是违规求助? 4993976
关于积分的说明 15170786
捐赠科研通 4839617
什么是DOI,文献DOI怎么找? 2593507
邀请新用户注册赠送积分活动 1546573
关于科研通互助平台的介绍 1504700