材料科学
超级电容器
单斜晶系
奈奎斯特图
形态学(生物学)
纳米技术
产量(工程)
镍
电化学
化学工程
分析化学(期刊)
结晶学
复合材料
冶金
晶体结构
介电谱
电容
色谱法
电极
工程类
物理化学
化学
生物
遗传学
作者
Garima Chaturvedi,Rishabh Jaiswal,S. Ilangovan,S. Sujatha,K.S. Ajeesh,Sankara Sarma V. Tatiparti
标识
DOI:10.1016/j.ceramint.2022.11.105
摘要
Nickel metal organic frameworks (Ni MOFs) were synthesized employing microwave technique for supercapacitor applications using Ni(NO3)2·6H2O (=M) and p-benzenedicarboxylic acid (=L) in M:L ratios of 1:1–4:1, 150–200 °C. Flakes, plates, nanoflowers, and globules are obtained and arranged in M:L-Temperature space to yield morphological stability map. Flakes appear at all M:L, 150 °C; plates form at M:L = 1:1, ≥ 165 °C; nanoflowers are seen at M:L ≥ 2:1, 165 °C; globules form at M:L ≥ 2:1, ≥ 180 °C. Cyclic voltammograms from these morphologies within 0 and + 0.6 V vs SCE at 10–100 mV s−1 show redox peaks corresponding to partial diffusion control, substantiated by galvanostatic charge-discharge (GCD) curves. From GCD, globules at M:L = 3:1 exhibit the highest specific capacitance (Csp) of 1361–600 F g−1 at 0.5–5.0 A g−1. This is attributed to their smallest size, presence of monoclinic and γ-NiOOH phases. Further, globules exhibit the lowest charge transfer resistance as estimated from the Nyquist plots showing two incomplete depressed semicircles. This work presents a systematic approach to select suitable Ni MOF morphologies for supercapacitor applications using morphological stability map. Also, it answers the question: "why does a particular morphology exhibit superior charge storage performance?"
科研通智能强力驱动
Strongly Powered by AbleSci AI