聚类分析
计算机科学
数据科学
斯科普斯
背景(考古学)
质量(理念)
专题地图
领域(数学分析)
优势和劣势
主题模型
情报检索
知识管理
人工智能
心理学
政治学
梅德林
地理
认识论
数学分析
哲学
地图学
考古
法学
数学
社会心理学
作者
Manuel J. Sánchez‐Franco,Arturo Calvo‐Mora,Rafael Periáñez-Cristóbal
标识
DOI:10.1080/14783363.2022.2139674
摘要
The research analyses the intellectual structure of research publications on Quality Movement (1980–2020), indexed in the Scopus database. It examines how themes have evolved, and it seeks to plan an editorial agenda. The research assumes a content-related method to reveal conceptual relationships in abstracts and conclude thematic trends, gaps, and weaknesses in the Quality Management domain and its implementation frameworks. In particular, the analysis is based on the BERTopic approach, i.e. it employs machine learning algorithms based on text summarisation and c-TF-IDF to create dense clusters using UMAP and hDBSCAN clustering. Although keywords are helpful in knowledge extraction, identifying hidden topics and their associations is a more robust approach to understanding the proper context of the analysed articles. As a result, the study identifies 48 topics and 13 metatopics for Quality Movement. In addition, the paper shows the temporal evolution of the topics, and identifies the topics and metatopics of growing interest in the emerging literature in QM.
科研通智能强力驱动
Strongly Powered by AbleSci AI