A LiDAR biomass index-based approach for tree- and plot-level biomass mapping over forest farms using 3D point clouds

激光雷达 落叶松 环境科学 生物量(生态学) 森林资源清查 遥感 树(集合论) 林业 森林经营 农林复合经营 数学 地理 生态学 生物 数学分析
作者
Liming Du,Yong Pang,Qiang Wang,Chengquan Huang,Yu Bai,Dongsheng Chen,Wei Lu,Dan Kong
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:290: 113543-113543 被引量:42
标识
DOI:10.1016/j.rse.2023.113543
摘要

Spatially continuous mapping forest aboveground biomass (AGB) is crucial for better understanding the capacities of carbon sequestration capacities of forest ecosystems at both individual tree and landscape levels. Collecting field data is one of the most labor-intensive and time-consuming tasks in biomass mapping using airborne laser scanning (ALS) data. Building on a LiDAR biomass index (LBI) developed for use with terrestrial laser scanning (TLS) data, we successfully developed an improved and robust LBI-based approach to estimate forest AGB at both individual tree and plot levels while minimizing the effort required for field data collection. This approach was tested for larch, birch, and eucalyptus over three forest farms in Northeast China and one in Southern China. The results showed that LBI was highly correlated with the diameter, height, and AGB of larch trees. AGB estimates derived using LBI-based models for the three tree species were close to ground measurements at the individual tree level. They explained 81% to 95% of the variance of independent test data not used to calibrate those models. Tree level AGB estimates are required by many applications, but they could not be provided by commonly used plot-based biomass mapping approaches like LiDAR metrics-based regression (LMR) or Random Forest (RF). Calibrated with small fractions of the trees needed to calibrate LMR and RF models, LBI-based biomass models produced plot level biomass estimates comparable to or better than those produced using the two plot-based methods. More importantly, the LBI-based models generalized far better than LMR and RF among the three larch forest farms located hundreds of kilometers apart. These promising results warrant more research on the effectiveness of the LBI-based approach for other forest types and tree species not considered in this study. As LiDAR technology and related algorithms are evolving rapidly, further improvements to this approach might be feasible. A robust LBI-based approach applicable to a wide range of tree species and forest types across the globe will greatly facilitate the use of increasingly better and more affordable ALS data to support REDD+ (Reducing Emissions from Deforestation and Forest Degradation) and other forest-based climate mitigation initiatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿容完成签到,获得积分10
刚刚
木炭完成签到,获得积分10
刚刚
搜集达人应助badada采纳,获得10
1秒前
顾矜应助zdd采纳,获得10
1秒前
2秒前
林夏应助伯赏盼晴采纳,获得10
2秒前
Hugsy完成签到,获得积分10
3秒前
3秒前
沐沐完成签到,获得积分20
4秒前
zhaoyg发布了新的文献求助10
4秒前
Naomi发布了新的文献求助10
5秒前
5秒前
Bovr完成签到,获得积分20
5秒前
5秒前
5秒前
星辰大海应助友好代亦采纳,获得10
6秒前
6秒前
李健的小迷弟应助Zzziihao采纳,获得10
6秒前
6秒前
深情安青应助Alex采纳,获得10
7秒前
7秒前
7秒前
大胆以蕊完成签到,获得积分10
7秒前
田様应助young406采纳,获得10
8秒前
8秒前
Kkkkkk完成签到,获得积分10
8秒前
9秒前
absorb发布了新的文献求助10
9秒前
lingling发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
湛湛发布了新的文献求助10
10秒前
lll完成签到,获得积分10
11秒前
星星人完成签到,获得积分10
11秒前
领导范儿应助Bailey采纳,获得30
12秒前
12秒前
ZZH发布了新的文献求助10
12秒前
尚欣雨完成签到,获得积分10
12秒前
CodeCraft应助杨德帅采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718762
求助须知:如何正确求助?哪些是违规求助? 5254117
关于积分的说明 15287024
捐赠科研通 4868786
什么是DOI,文献DOI怎么找? 2614471
邀请新用户注册赠送积分活动 1564338
关于科研通互助平台的介绍 1521791