A LiDAR biomass index-based approach for tree- and plot-level biomass mapping over forest farms using 3D point clouds

激光雷达 落叶松 环境科学 生物量(生态学) 森林资源清查 遥感 树(集合论) 林业 森林经营 农林复合经营 数学 地理 生态学 生物 数学分析
作者
Liming Du,Yong Pang,Qiang Wang,Chengquan Huang,Yu Bai,Dongsheng Chen,Wei Lu,Dan Kong
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:290: 113543-113543 被引量:42
标识
DOI:10.1016/j.rse.2023.113543
摘要

Spatially continuous mapping forest aboveground biomass (AGB) is crucial for better understanding the capacities of carbon sequestration capacities of forest ecosystems at both individual tree and landscape levels. Collecting field data is one of the most labor-intensive and time-consuming tasks in biomass mapping using airborne laser scanning (ALS) data. Building on a LiDAR biomass index (LBI) developed for use with terrestrial laser scanning (TLS) data, we successfully developed an improved and robust LBI-based approach to estimate forest AGB at both individual tree and plot levels while minimizing the effort required for field data collection. This approach was tested for larch, birch, and eucalyptus over three forest farms in Northeast China and one in Southern China. The results showed that LBI was highly correlated with the diameter, height, and AGB of larch trees. AGB estimates derived using LBI-based models for the three tree species were close to ground measurements at the individual tree level. They explained 81% to 95% of the variance of independent test data not used to calibrate those models. Tree level AGB estimates are required by many applications, but they could not be provided by commonly used plot-based biomass mapping approaches like LiDAR metrics-based regression (LMR) or Random Forest (RF). Calibrated with small fractions of the trees needed to calibrate LMR and RF models, LBI-based biomass models produced plot level biomass estimates comparable to or better than those produced using the two plot-based methods. More importantly, the LBI-based models generalized far better than LMR and RF among the three larch forest farms located hundreds of kilometers apart. These promising results warrant more research on the effectiveness of the LBI-based approach for other forest types and tree species not considered in this study. As LiDAR technology and related algorithms are evolving rapidly, further improvements to this approach might be feasible. A robust LBI-based approach applicable to a wide range of tree species and forest types across the globe will greatly facilitate the use of increasingly better and more affordable ALS data to support REDD+ (Reducing Emissions from Deforestation and Forest Degradation) and other forest-based climate mitigation initiatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
密斯特蟹发布了新的文献求助10
刚刚
刚刚
George完成签到,获得积分10
1秒前
1秒前
烟熏柿子完成签到,获得积分10
1秒前
一缕阳光完成签到,获得积分10
1秒前
1秒前
无昵称发布了新的文献求助10
1秒前
2秒前
2秒前
FashionBoy应助小田采纳,获得10
3秒前
哎哟哎哟发布了新的文献求助10
3秒前
欧皇完成签到,获得积分20
4秒前
Lucas应助junfeiwang采纳,获得10
4秒前
东方元语发布了新的文献求助10
4秒前
推土机爱学习完成签到 ,获得积分10
4秒前
隐形曼青应助潇湘客采纳,获得10
5秒前
5秒前
5秒前
limi完成签到,获得积分10
5秒前
文刀完成签到,获得积分10
5秒前
pick_up完成签到,获得积分10
6秒前
6秒前
AHR发布了新的文献求助10
7秒前
111发布了新的文献求助30
7秒前
Koma完成签到,获得积分10
7秒前
平家boy发布了新的文献求助10
7秒前
7秒前
limi发布了新的文献求助10
8秒前
一一一应助感动白凝采纳,获得10
8秒前
9秒前
9秒前
Koma发布了新的文献求助10
10秒前
冷静剑成完成签到,获得积分10
10秒前
灰鲸发布了新的文献求助10
10秒前
我爱读文献完成签到,获得积分10
11秒前
11秒前
Zero发布了新的文献求助10
11秒前
背后的映寒完成签到,获得积分10
11秒前
Steven24go发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5531940
求助须知:如何正确求助?哪些是违规求助? 4620674
关于积分的说明 14574347
捐赠科研通 4560401
什么是DOI,文献DOI怎么找? 2498857
邀请新用户注册赠送积分活动 1478757
关于科研通互助平台的介绍 1450090