A LiDAR biomass index-based approach for tree- and plot-level biomass mapping over forest farms using 3D point clouds

激光雷达 落叶松 环境科学 生物量(生态学) 森林资源清查 遥感 树(集合论) 林业 森林经营 农林复合经营 数学 地理 生态学 生物 数学分析
作者
Liming Du,Yong Pang,Qiang Wang,Chengquan Huang,Yu Bai,Dongsheng Chen,Wei Lu,Dan Kong
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:290: 113543-113543 被引量:35
标识
DOI:10.1016/j.rse.2023.113543
摘要

Spatially continuous mapping forest aboveground biomass (AGB) is crucial for better understanding the capacities of carbon sequestration capacities of forest ecosystems at both individual tree and landscape levels. Collecting field data is one of the most labor-intensive and time-consuming tasks in biomass mapping using airborne laser scanning (ALS) data. Building on a LiDAR biomass index (LBI) developed for use with terrestrial laser scanning (TLS) data, we successfully developed an improved and robust LBI-based approach to estimate forest AGB at both individual tree and plot levels while minimizing the effort required for field data collection. This approach was tested for larch, birch, and eucalyptus over three forest farms in Northeast China and one in Southern China. The results showed that LBI was highly correlated with the diameter, height, and AGB of larch trees. AGB estimates derived using LBI-based models for the three tree species were close to ground measurements at the individual tree level. They explained 81% to 95% of the variance of independent test data not used to calibrate those models. Tree level AGB estimates are required by many applications, but they could not be provided by commonly used plot-based biomass mapping approaches like LiDAR metrics-based regression (LMR) or Random Forest (RF). Calibrated with small fractions of the trees needed to calibrate LMR and RF models, LBI-based biomass models produced plot level biomass estimates comparable to or better than those produced using the two plot-based methods. More importantly, the LBI-based models generalized far better than LMR and RF among the three larch forest farms located hundreds of kilometers apart. These promising results warrant more research on the effectiveness of the LBI-based approach for other forest types and tree species not considered in this study. As LiDAR technology and related algorithms are evolving rapidly, further improvements to this approach might be feasible. A robust LBI-based approach applicable to a wide range of tree species and forest types across the globe will greatly facilitate the use of increasingly better and more affordable ALS data to support REDD+ (Reducing Emissions from Deforestation and Forest Degradation) and other forest-based climate mitigation initiatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sun发布了新的文献求助10
刚刚
DIY101发布了新的文献求助10
刚刚
刚刚
汉堡包应助meatball1982采纳,获得10
1秒前
1秒前
孤独梦曼完成签到,获得积分10
1秒前
我行我素完成签到,获得积分10
1秒前
xiongqi完成签到 ,获得积分10
2秒前
柠檬味电子对儿完成签到,获得积分10
3秒前
少言完成签到,获得积分10
5秒前
liherong完成签到,获得积分10
5秒前
奋斗蚂蚁完成签到 ,获得积分10
5秒前
5秒前
232127_发布了新的文献求助10
5秒前
5秒前
soso完成签到,获得积分20
5秒前
孔乙己完成签到,获得积分10
6秒前
Gstar完成签到,获得积分10
6秒前
lee完成签到,获得积分10
7秒前
wkyt发布了新的文献求助10
7秒前
哈哈发布了新的文献求助10
7秒前
明理小凝完成签到 ,获得积分10
8秒前
英俊的铭应助shirely采纳,获得10
8秒前
友好的灯泡完成签到,获得积分10
8秒前
fanicky完成签到,获得积分10
9秒前
10秒前
10秒前
卡乐瑞咩吹可完成签到,获得积分10
10秒前
KUYAA完成签到 ,获得积分10
10秒前
星星月完成签到 ,获得积分10
11秒前
牛马小白完成签到,获得积分10
11秒前
爱尼可发布了新的文献求助10
12秒前
大个应助茂飞采纳,获得10
12秒前
大Doctor陈完成签到,获得积分10
12秒前
泽硕完成签到,获得积分10
12秒前
北风完成签到,获得积分10
13秒前
耶耶完成签到,获得积分10
13秒前
yydsyk完成签到,获得积分10
13秒前
sfliufighting完成签到,获得积分10
13秒前
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015939
求助须知:如何正确求助?哪些是违规求助? 3555887
关于积分的说明 11319237
捐赠科研通 3288997
什么是DOI,文献DOI怎么找? 1812357
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812044