A LiDAR biomass index-based approach for tree- and plot-level biomass mapping over forest farms using 3D point clouds

激光雷达 落叶松 环境科学 生物量(生态学) 森林资源清查 遥感 树(集合论) 林业 森林经营 农林复合经营 数学 地理 生态学 生物 数学分析
作者
Liming Du,Yong Pang,Qiang Wang,Chengquan Huang,Yu Bai,Dongsheng Chen,Wei Lu,Dan Kong
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:290: 113543-113543 被引量:21
标识
DOI:10.1016/j.rse.2023.113543
摘要

Spatially continuous mapping forest aboveground biomass (AGB) is crucial for better understanding the capacities of carbon sequestration capacities of forest ecosystems at both individual tree and landscape levels. Collecting field data is one of the most labor-intensive and time-consuming tasks in biomass mapping using airborne laser scanning (ALS) data. Building on a LiDAR biomass index (LBI) developed for use with terrestrial laser scanning (TLS) data, we successfully developed an improved and robust LBI-based approach to estimate forest AGB at both individual tree and plot levels while minimizing the effort required for field data collection. This approach was tested for larch, birch, and eucalyptus over three forest farms in Northeast China and one in Southern China. The results showed that LBI was highly correlated with the diameter, height, and AGB of larch trees. AGB estimates derived using LBI-based models for the three tree species were close to ground measurements at the individual tree level. They explained 81% to 95% of the variance of independent test data not used to calibrate those models. Tree level AGB estimates are required by many applications, but they could not be provided by commonly used plot-based biomass mapping approaches like LiDAR metrics-based regression (LMR) or Random Forest (RF). Calibrated with small fractions of the trees needed to calibrate LMR and RF models, LBI-based biomass models produced plot level biomass estimates comparable to or better than those produced using the two plot-based methods. More importantly, the LBI-based models generalized far better than LMR and RF among the three larch forest farms located hundreds of kilometers apart. These promising results warrant more research on the effectiveness of the LBI-based approach for other forest types and tree species not considered in this study. As LiDAR technology and related algorithms are evolving rapidly, further improvements to this approach might be feasible. A robust LBI-based approach applicable to a wide range of tree species and forest types across the globe will greatly facilitate the use of increasingly better and more affordable ALS data to support REDD+ (Reducing Emissions from Deforestation and Forest Degradation) and other forest-based climate mitigation initiatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木质素爱好者完成签到,获得积分10
1秒前
加菲丰丰举报求助违规成功
3秒前
西里举报求助违规成功
3秒前
嗯哼举报求助违规成功
3秒前
3秒前
fanfan44390完成签到,获得积分10
3秒前
3秒前
MG发布了新的文献求助10
3秒前
JET_Li完成签到,获得积分10
3秒前
你真是饿了应助斯文谷秋采纳,获得20
3秒前
4秒前
4秒前
共享精神应助取法乎上采纳,获得10
4秒前
Agoni完成签到,获得积分10
5秒前
杭问兰完成签到,获得积分10
6秒前
底物发布了新的文献求助10
8秒前
杭幻丝发布了新的文献求助10
8秒前
Shawn完成签到 ,获得积分10
9秒前
liuziyu完成签到,获得积分10
9秒前
ZHANG_Kun发布了新的文献求助10
9秒前
加菲丰丰举报求助违规成功
9秒前
行隐举报求助违规成功
9秒前
Yziii举报求助违规成功
9秒前
9秒前
ping完成签到,获得积分10
10秒前
zzz完成签到,获得积分10
10秒前
眼睛大雨筠应助0707007采纳,获得10
10秒前
传奇3应助mikasa采纳,获得10
12秒前
12秒前
12秒前
12秒前
答辩发布了新的文献求助10
15秒前
Hi_爱吃大米饭完成签到,获得积分10
15秒前
取法乎上发布了新的文献求助10
16秒前
妩媚的尔阳完成签到,获得积分10
17秒前
底物完成签到,获得积分10
17秒前
orixero应助ZR采纳,获得10
17秒前
BareBear完成签到,获得积分10
19秒前
haokeyan发布了新的文献求助20
19秒前
闪闪灵枫发布了新的文献求助10
19秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Geochemistry, 2nd Edition 地球化学经典教科书第二版 401
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3216667
求助须知:如何正确求助?哪些是违规求助? 2865842
关于积分的说明 8149328
捐赠科研通 2532367
什么是DOI,文献DOI怎么找? 1365722
科研通“疑难数据库(出版商)”最低求助积分说明 644579
邀请新用户注册赠送积分活动 617511