A LiDAR biomass index-based approach for tree- and plot-level biomass mapping over forest farms using 3D point clouds

激光雷达 落叶松 环境科学 生物量(生态学) 森林资源清查 遥感 树(集合论) 林业 森林经营 农林复合经营 数学 地理 生态学 数学分析 生物
作者
Liming Du,Yong Pang,Qiang Wang,Chengquan Huang,Yu Bai,Dongsheng Chen,Wei Lu,Dan Kong
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:290: 113543-113543 被引量:42
标识
DOI:10.1016/j.rse.2023.113543
摘要

Spatially continuous mapping forest aboveground biomass (AGB) is crucial for better understanding the capacities of carbon sequestration capacities of forest ecosystems at both individual tree and landscape levels. Collecting field data is one of the most labor-intensive and time-consuming tasks in biomass mapping using airborne laser scanning (ALS) data. Building on a LiDAR biomass index (LBI) developed for use with terrestrial laser scanning (TLS) data, we successfully developed an improved and robust LBI-based approach to estimate forest AGB at both individual tree and plot levels while minimizing the effort required for field data collection. This approach was tested for larch, birch, and eucalyptus over three forest farms in Northeast China and one in Southern China. The results showed that LBI was highly correlated with the diameter, height, and AGB of larch trees. AGB estimates derived using LBI-based models for the three tree species were close to ground measurements at the individual tree level. They explained 81% to 95% of the variance of independent test data not used to calibrate those models. Tree level AGB estimates are required by many applications, but they could not be provided by commonly used plot-based biomass mapping approaches like LiDAR metrics-based regression (LMR) or Random Forest (RF). Calibrated with small fractions of the trees needed to calibrate LMR and RF models, LBI-based biomass models produced plot level biomass estimates comparable to or better than those produced using the two plot-based methods. More importantly, the LBI-based models generalized far better than LMR and RF among the three larch forest farms located hundreds of kilometers apart. These promising results warrant more research on the effectiveness of the LBI-based approach for other forest types and tree species not considered in this study. As LiDAR technology and related algorithms are evolving rapidly, further improvements to this approach might be feasible. A robust LBI-based approach applicable to a wide range of tree species and forest types across the globe will greatly facilitate the use of increasingly better and more affordable ALS data to support REDD+ (Reducing Emissions from Deforestation and Forest Degradation) and other forest-based climate mitigation initiatives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彬子完成签到,获得积分10
1秒前
1秒前
longsay完成签到,获得积分10
1秒前
tzy完成签到,获得积分10
2秒前
wang12发布了新的文献求助10
2秒前
体贴寒烟发布了新的文献求助10
2秒前
hiu完成签到,获得积分10
2秒前
xin完成签到,获得积分10
3秒前
欧阳静芙完成签到,获得积分10
3秒前
Yolo完成签到,获得积分10
3秒前
3秒前
高兴1江完成签到,获得积分10
3秒前
4秒前
4秒前
一修完成签到,获得积分10
4秒前
Jasper应助梅花飞飞采纳,获得10
4秒前
Weaver_312完成签到,获得积分10
5秒前
jie完成签到,获得积分10
5秒前
赘婿应助室内设计采纳,获得10
5秒前
超级盼烟完成签到,获得积分10
5秒前
6秒前
小二郎应助快乐的行云采纳,获得10
6秒前
leoan完成签到,获得积分10
6秒前
腼腆的梦蕊完成签到 ,获得积分10
6秒前
6秒前
7秒前
7秒前
Confetti完成签到 ,获得积分10
7秒前
7秒前
普连安发布了新的文献求助10
8秒前
迷路易梦完成签到 ,获得积分10
8秒前
搜集达人应助xin采纳,获得10
8秒前
科研通AI6应助博宇采纳,获得10
8秒前
9秒前
melo完成签到,获得积分10
9秒前
清爽水风完成签到,获得积分20
9秒前
阙女士发布了新的文献求助10
9秒前
舒克完成签到,获得积分10
9秒前
李爱国应助炸药采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5326742
求助须知:如何正确求助?哪些是违规求助? 4466897
关于积分的说明 13899169
捐赠科研通 4359470
什么是DOI,文献DOI怎么找? 2394598
邀请新用户注册赠送积分活动 1388153
关于科研通互助平台的介绍 1358919