A compound fault diagnosis model for gearboxes using correlation information between single faults

计算机科学 邻接矩阵 图形 模式识别(心理学) 断层(地质) 特征向量 数据挖掘 特征(语言学) 人工智能 节点(物理) 理论计算机科学 工程类 哲学 地震学 地质学 结构工程 语言学
作者
Ming Zeng,Hao Wang,Yiwei Cheng,Jianyu Wei
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:35 (3): 036202-036202 被引量:7
标识
DOI:10.1088/1361-6501/ad1312
摘要

Abstract Gearboxes are key components of rotating machinery. Performing intelligent fault diagnosis of gearboxes with condition-based monitoring information helps to make reliable decisions on equipment operation and maintenance. Besides single faults, compound faults also are common failure forms of gearboxes. Conventional intelligent diagnosis models (known as single-label models) generally treat a compound fault as a new fault type, ignoring the correlations between the compound fault and the corresponding single faults. To overcome this problem, multi-label learning has been introduced and developed into multi-label models. It is also possible that different single faults are not independent but correlated with each other. Existing multi-label models, however, usually ignore this aspect. Therefore, exploiting the correlation information between single faults can further improve multi-label models. To this end, every single fault is treated as a label node , resulting in a label graph. The feature vector of each label node is initialized by the word embedding of the corresponding single-fault label. All the word embeddings are mapped using graph convolutional networks (GCN) into the parameter vectors of a set of interdependent binary linear classifiers that can directly perform multi-label classification on health categories. Meanwhile, the adjacency matrix of the label graph is adaptively learned by self-attention (SA) from node feature vectors. In this way, a novel multi-label model based on SA and GCN (referred to as SA-GCN) is proposed for compound fault diagnosis of gearboxes. SA-GCN mainly consists of a ResNet-based fault feature learning module, an SA-based adjacency matrix learning module, and a GCN-based multi-label classifier learning module. The application results on two gearbox cases show that SA-GCN outperforms conventional single-label models as well as state-of-the-art multi-label models in terms of both the diagnostic accuracy of compound faults and the overall diagnostic accuracy. Moreover, the effects of internal modules and hyperparameters on SA-GCN are also investigated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
inyh59完成签到 ,获得积分10
2秒前
搜集达人应助球形的荒野采纳,获得10
3秒前
小稻草人发布了新的文献求助10
4秒前
所所应助顺顺顺采纳,获得30
4秒前
Gleaming完成签到,获得积分10
5秒前
6秒前
javascript完成签到,获得积分10
6秒前
6秒前
6秒前
8秒前
9秒前
9秒前
10秒前
10秒前
Yy完成签到,获得积分10
11秒前
miugmiug发布了新的文献求助10
11秒前
tenure发布了新的文献求助10
13秒前
徐不言完成签到,获得积分10
13秒前
善学以致用应助swallow采纳,获得10
14秒前
想喝冰美发布了新的文献求助10
15秒前
mint发布了新的文献求助10
17秒前
高球球完成签到,获得积分10
17秒前
17秒前
不见高山发布了新的文献求助20
18秒前
共享精神应助Lucille采纳,获得10
18秒前
虚幻芷文应助小马采纳,获得20
19秒前
miugmiug完成签到,获得积分10
19秒前
21秒前
21秒前
kimoto完成签到 ,获得积分10
22秒前
行路1发布了新的文献求助10
22秒前
tenure完成签到,获得积分10
23秒前
25秒前
26秒前
26秒前
高球球发布了新的文献求助10
26秒前
阿沫发布了新的文献求助50
27秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462453
求助须知:如何正确求助?哪些是违规求助? 3056020
关于积分的说明 9050191
捐赠科研通 2745593
什么是DOI,文献DOI怎么找? 1506464
科研通“疑难数据库(出版商)”最低求助积分说明 696123
邀请新用户注册赠送积分活动 695633