差示扫描量热法
化学
傅里叶变换红外光谱
脂质氧化
磷脂酰胆碱
化学工程
分散性
色谱法
有机化学
膜
抗氧化剂
磷脂
生物化学
热力学
物理
工程类
作者
Dongyang Zhu,Shuzhen Cheng,Ming Du
标识
DOI:10.1016/j.foodres.2023.113843
摘要
Phosphatidylcholine (PC) oxidation leads to the fusion of nanoliposomes and leakage of containment compounds during the storage period. This study aims to improve the oxidation resistance by partially substituting PC in the osteogenic peptides (OPs) loaded nanoliposomes with hydrogenated phosphatidylcholine (HPC). The investigation assessed the characteristics, stability, and bioaccessibility of these novel nanoliposomes. By altering the PC/HPC mass ratio from 1:0 to 0:1, an increase in the encapsulation efficiency (EE), loading capacity (LC), polydispersity index (PDI), and bioaccessibility of OPs-loaded nanoliposomes was observed. Additionally, there was a decrease in thiobarbituric acid reactive substances (TBARS), peroxide value (POV), non-volatile aldehyde, and ketone. The stability of salt decreased when using HPC alone (0:1). The performance of OPs-loaded nanoliposomes with a PC/HPC mass ratio of 1:3 was found to be satisfactory in terms of storage and pH stability. Fluorescence spectroscopy, Differential Scanning Calorimetry (DSC) and Fourier Transform Infrared spectroscopy (FTIR) revealed a tighter lipid aggregation, enhanced intermolecular van der Waals forces, and hydrogen bond formation in membranes of nanoliposomes containing HPC. The addition of HPC to the nanoliposomes delayed the release of peptides in simulated without affecting osteogenic activity. These results provide guidance for the development of oxidation-resistant nanoliposomes loaded with OPs products.
科研通智能强力驱动
Strongly Powered by AbleSci AI