亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An Information Fusion System-Driven Deep Neural Networks With Application to Cancer Mortality Risk Estimate

癌症 头颈部鳞状细胞癌 疾病 生物信息学 融合基因 计算机科学 计算生物学 基因 生物 医学 头颈部癌 内科学 遗传学
作者
Cheng‐Hong Yang,Sin‐Hua Moi,Li‐Yeh Chuang,Yu‐Da Lin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:6
标识
DOI:10.1109/tnnls.2023.3342462
摘要

Next-generation sequencing (NGS) genomic data offer valuable high-throughput genomic information for computational applications in medicine. Using genomic data to identify disease-associated genes to estimate cancer mortality risk remains challenging regarding to computational efficiency and risk integration. For determining mortality-related genes, we propose an information fusion system based on a fuzzy system to fuse the numerous deep-learning-based risk scores, consider the significance of features related to time-varying effects and risk stratifications, and interpret the directional relationship and interaction between outcome and predictors. Fuzzy rules were implemented to integrate the considerations mentioned above by merging all the risk score models to achieve advanced risk estimation. The genomic data of head and neck squamous cell carcinoma (HNSCC) were used to evaluate the performance of the proposed computational approach. The results indicated that the proposed computational approach exhibited optimal ability to identify mortality risk-related genes in HNSCC patients. The results also suggest that HNSCC mortality is associated with cancer inflammatory response, the interleukin-17A signaling pathway, stellate cell activation, and the extracellular-regulated protein kinase five signaling pathway, which might offer new therapeutic targets HNSCC through immunologic or antiangiogenic mechanisms. The proposed information fusion system can promote the determination of high-risk genes related to cancer mortality. This study contributes a valid cancer mortality risk estimate that can identify mortality-related genes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助凶狠的秀发采纳,获得10
4秒前
ruiruirui完成签到 ,获得积分10
8秒前
空城驳回了wanci应助
11秒前
20秒前
Cmqq发布了新的文献求助10
26秒前
qqq完成签到 ,获得积分10
33秒前
46秒前
53秒前
科研通AI2S应助科研通管家采纳,获得10
53秒前
BowieHuang应助科研通管家采纳,获得10
53秒前
小白加油完成签到 ,获得积分10
58秒前
58秒前
又声完成签到,获得积分10
1分钟前
xiha西希完成签到,获得积分10
1分钟前
pleiotropy完成签到 ,获得积分10
1分钟前
Ferry完成签到,获得积分10
1分钟前
1分钟前
电量过低完成签到 ,获得积分10
1分钟前
1分钟前
隐形曼青应助Seeking采纳,获得10
1分钟前
yoga发布了新的文献求助10
1分钟前
酷波er应助卿筠采纳,获得10
1分钟前
乐乐应助Cmqq采纳,获得10
1分钟前
1分钟前
Seeking发布了新的文献求助10
1分钟前
1分钟前
1分钟前
Cmqq发布了新的文献求助10
2分钟前
yummy发布了新的文献求助10
2分钟前
浪里白条完成签到,获得积分10
2分钟前
jml完成签到,获得积分10
2分钟前
汉堡包应助调皮友安采纳,获得10
2分钟前
天天快乐应助Cmqq采纳,获得10
2分钟前
无情的瑾瑜完成签到,获得积分10
2分钟前
机智夜梦发布了新的文献求助200
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
今后应助科研通管家采纳,获得10
2分钟前
BowieHuang应助科研通管家采纳,获得10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599776
求助须知:如何正确求助?哪些是违规求助? 4685483
关于积分的说明 14838528
捐赠科研通 4670394
什么是DOI,文献DOI怎么找? 2538191
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470904