An Information Fusion System-Driven Deep Neural Networks With Application to Cancer Mortality Risk Estimate

癌症 头颈部鳞状细胞癌 疾病 生物信息学 融合基因 计算机科学 计算生物学 基因 生物 医学 头颈部癌 内科学 遗传学
作者
Cheng‐Hong Yang,Sin‐Hua Moi,Li‐Yeh Chuang,Yu-Da Lin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:1
标识
DOI:10.1109/tnnls.2023.3342462
摘要

Next-generation sequencing (NGS) genomic data offer valuable high-throughput genomic information for computational applications in medicine. Using genomic data to identify disease-associated genes to estimate cancer mortality risk remains challenging regarding to computational efficiency and risk integration. For determining mortality-related genes, we propose an information fusion system based on a fuzzy system to fuse the numerous deep-learning-based risk scores, consider the significance of features related to time-varying effects and risk stratifications, and interpret the directional relationship and interaction between outcome and predictors. Fuzzy rules were implemented to integrate the considerations mentioned above by merging all the risk score models to achieve advanced risk estimation. The genomic data of head and neck squamous cell carcinoma (HNSCC) were used to evaluate the performance of the proposed computational approach. The results indicated that the proposed computational approach exhibited optimal ability to identify mortality risk-related genes in HNSCC patients. The results also suggest that HNSCC mortality is associated with cancer inflammatory response, the interleukin-17A signaling pathway, stellate cell activation, and the extracellular-regulated protein kinase five signaling pathway, which might offer new therapeutic targets HNSCC through immunologic or antiangiogenic mechanisms. The proposed information fusion system can promote the determination of high-risk genes related to cancer mortality. This study contributes a valid cancer mortality risk estimate that can identify mortality-related genes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_VZG7GZ应助苍耳采纳,获得30
1秒前
1秒前
yangyang发布了新的文献求助10
1秒前
tiasn关注了科研通微信公众号
1秒前
Unshouable发布了新的文献求助10
1秒前
如意冰棍完成签到 ,获得积分10
1秒前
2秒前
2秒前
OO圈圈发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
保持好心情完成签到 ,获得积分10
3秒前
小盆呐完成签到,获得积分10
5秒前
Accept关注了科研通微信公众号
5秒前
实验大牛完成签到,获得积分10
5秒前
SYLH应助嗯嗯采纳,获得30
5秒前
莫里完成签到,获得积分10
5秒前
独特的向日葵完成签到,获得积分10
5秒前
lz发布了新的文献求助10
6秒前
Enzo发布了新的文献求助10
6秒前
6秒前
菠菜发布了新的文献求助200
6秒前
格物致知发布了新的文献求助10
7秒前
动听锦程发布了新的文献求助10
7秒前
8秒前
wdy111应助左丘以云采纳,获得20
8秒前
8秒前
8秒前
糊辣鱼完成签到 ,获得积分10
9秒前
SYLH应助Ridley采纳,获得10
9秒前
10秒前
TWOTP完成签到,获得积分10
10秒前
Asystasia7完成签到,获得积分10
10秒前
10秒前
CATH发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
小蘑菇应助傻傻的夜柳采纳,获得30
12秒前
cxccx发布了新的文献求助10
12秒前
poker84完成签到,获得积分10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653