An Information Fusion System-Driven Deep Neural Networks With Application to Cancer Mortality Risk Estimate

癌症 头颈部鳞状细胞癌 疾病 生物信息学 融合基因 计算机科学 计算生物学 基因 生物 医学 头颈部癌 内科学 遗传学
作者
Cheng‐Hong Yang,Sin‐Hua Moi,Li‐Yeh Chuang,Yu‐Da Lin
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12 被引量:6
标识
DOI:10.1109/tnnls.2023.3342462
摘要

Next-generation sequencing (NGS) genomic data offer valuable high-throughput genomic information for computational applications in medicine. Using genomic data to identify disease-associated genes to estimate cancer mortality risk remains challenging regarding to computational efficiency and risk integration. For determining mortality-related genes, we propose an information fusion system based on a fuzzy system to fuse the numerous deep-learning-based risk scores, consider the significance of features related to time-varying effects and risk stratifications, and interpret the directional relationship and interaction between outcome and predictors. Fuzzy rules were implemented to integrate the considerations mentioned above by merging all the risk score models to achieve advanced risk estimation. The genomic data of head and neck squamous cell carcinoma (HNSCC) were used to evaluate the performance of the proposed computational approach. The results indicated that the proposed computational approach exhibited optimal ability to identify mortality risk-related genes in HNSCC patients. The results also suggest that HNSCC mortality is associated with cancer inflammatory response, the interleukin-17A signaling pathway, stellate cell activation, and the extracellular-regulated protein kinase five signaling pathway, which might offer new therapeutic targets HNSCC through immunologic or antiangiogenic mechanisms. The proposed information fusion system can promote the determination of high-risk genes related to cancer mortality. This study contributes a valid cancer mortality risk estimate that can identify mortality-related genes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无极微光应助科研通管家采纳,获得20
刚刚
123应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
归尘应助科研通管家采纳,获得10
刚刚
柏林寒冬应助科研通管家采纳,获得10
1秒前
归尘应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
123应助科研通管家采纳,获得10
1秒前
WB87应助科研通管家采纳,获得10
1秒前
1秒前
陈末应助烦烦烦采纳,获得10
1秒前
1秒前
1秒前
1秒前
Hello应助科研通管家采纳,获得10
1秒前
打打应助科研通管家采纳,获得10
2秒前
小青椒应助科研通管家采纳,获得150
2秒前
123应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
3秒前
夏沫完成签到,获得积分10
3秒前
怡然枫叶发布了新的文献求助30
3秒前
饱满一手完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
6秒前
小二郎应助南宫硕采纳,获得10
6秒前
阔达乐松发布了新的文献求助10
7秒前
8秒前
星河完成签到,获得积分10
9秒前
陈末应助烦烦烦采纳,获得10
11秒前
虚拟的飞双完成签到 ,获得积分10
13秒前
13秒前
怡然枫叶完成签到,获得积分10
14秒前
15秒前
17秒前
哈哈哈发布了新的文献求助10
19秒前
20秒前
21秒前
陈末应助烦烦烦采纳,获得10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Alloy Phase Diagrams 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 901
Item Response Theory 600
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5425301
求助须知:如何正确求助?哪些是违规求助? 4539379
关于积分的说明 14167473
捐赠科研通 4456762
什么是DOI,文献DOI怎么找? 2444285
邀请新用户注册赠送积分活动 1435283
关于科研通互助平台的介绍 1412688