Estimation of water quality variables based on machine learning model and cluster analysis-based empirical model using multi-source remote sensing data in inland reservoirs, South China

多光谱图像 水质 支持向量机 梯度升压 遥感 计算机科学 专题制图器 环境科学 经验模型 人工神经网络 随机森林 聚类分析 卫星图像 人工智能 地理 生态学 生物 程序设计语言
作者
Di Tian,Xinfeng Zhao,Lei Gao,Zuobing Liang,Zaizhi Yang,Pengcheng Zhang,Qirui Wu,Kun Ren,Rui Li,Chenchen Yang,Shaoheng Li,Meng Wang,Zhidong He,Zebin Zhang,Jianyao Chen
出处
期刊:Environmental Pollution [Elsevier]
卷期号:342: 123104-123104 被引量:5
标识
DOI:10.1016/j.envpol.2023.123104
摘要

Reservoirs play important roles in the drinking water supply for urban residents, agricultural water provision, and the maintenance of ecosystem health. Satellite optical remote sensing of water quality variables in medium and micro-sized inland waters under oligotrophic and mesotrophic status is challenging in terms of the spatio-temporal resolution, weather conditions and frequent nutrient status changes in reservoirs, etc., especially when quantifying non-optically active components (non-OACs). This study was based on the surface reflectance products of unmanned aerial vehicle (UAV) multispectral images, Sentinel-2B Multispectral instrument (MSI) images and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) by utilizing fuzzy C-means (FCM) clustering algorithm was combined with band combination (BC) model to construct the FCM-BC empirical model, and used mixed density network (MDN), extreme gradient boosting (XGBoost), deep neural network (DNN) and support vector regression (SVR) machine learning (ML) models to invert 12 kinds of optically active components (OACs) and non-OACs. Compared with the unclustered BC (UC) model, the mean coefficient of determination (MR) of the FCM-BC models was improved by at least 46.9%. MDN model showed best accuracy (R2 in the range of 0.60–0.98) and stability (R2 decreased by up to 13.2%). The accuracy of UAV was relatively higher in both empirical methods and machine learning methods. Additionally, the spatio-temporal distribution maps of four water quality variables were mapped based on the MDN model and UAV images, all platforms showed good consistency. An inversion strategy of water quality variables in various monitoring frequencies and weather conditions were proposed finally. The purpose of introducing the UAV platform was to cooperate with the satellite to improve the monitoring response ability of OACs and non-OACs in small and micro-sized oligotrophic and mesotrophic water bodies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SYLH应助科研通管家采纳,获得10
刚刚
今后应助科研通管家采纳,获得10
刚刚
研友_Z14Yln应助科研通管家采纳,获得10
1秒前
思源应助科研通管家采纳,获得10
1秒前
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
CipherSage应助科研通管家采纳,获得10
1秒前
一一应助科研通管家采纳,获得10
1秒前
一一应助科研通管家采纳,获得10
1秒前
传奇3应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
zouqi完成签到,获得积分20
1秒前
1秒前
1秒前
1秒前
1秒前
大模型应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
跳跃富发布了新的文献求助10
1秒前
sijinian完成签到,获得积分20
2秒前
Hello应助无心的土豆采纳,获得10
3秒前
咕咕应助dd采纳,获得20
3秒前
Andd发布了新的文献求助10
4秒前
呱呱完成签到 ,获得积分10
4秒前
5秒前
6秒前
8秒前
zxcsdfa应助之桃采纳,获得30
9秒前
11秒前
Decade2021发布了新的文献求助10
12秒前
jixuzhuixun完成签到 ,获得积分10
12秒前
xxm发布了新的文献求助10
12秒前
思源应助Distance采纳,获得10
13秒前
13秒前
13秒前
mogeko完成签到,获得积分10
13秒前
科研通AI2S应助zlx采纳,获得10
13秒前
真洋子哈完成签到,获得积分10
15秒前
杳鸢应助不敢装睡采纳,获得30
15秒前
高分求助中
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
Relativism, Conceptual Schemes, and Categorical Frameworks 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3462367
求助须知:如何正确求助?哪些是违规求助? 3055905
关于积分的说明 9049830
捐赠科研通 2745482
什么是DOI,文献DOI怎么找? 1506365
科研通“疑难数据库(出版商)”最低求助积分说明 696092
邀请新用户注册赠送积分活动 695620