Modeling interaction behavior and preference decline for live stream recommendation

直播流媒体 计算机科学 偏爱 过程(计算) 会话(web分析) 集合(抽象数据类型) 人机交互 多媒体 万维网 程序设计语言 经济 微观经济学 操作系统
作者
J.X. Chen,Hongyan Liu
出处
期刊:Decision Support Systems [Elsevier]
卷期号:179: 114146-114146 被引量:5
标识
DOI:10.1016/j.dss.2023.114146
摘要

In recent years, live streaming has experienced rapid growth and become an influential way to engage people online. How to recommend live streams to viewers to improve user experience is the core business problem of live streaming platforms. On such platforms, viewers frequently change live streams to watch in each session for the enjoyment of the watching process. Live interaction along with streaming, which enables broadcasters and viewers to better connect with each other, is a core feature of live streaming and plays important roles in viewers' watching behaviors. How to model the changing process of viewer preference during each watching behavior and capture the influence of live interaction is key for understanding viewer behaviors and making effective recommendations of live streams but has not been well studied in the literature. To address this research gap, we incorporate user behavior theory into data driven modeling method and propose an interaction-aware predictive framework for live stream recommendation. Specifically, we develop a novel threshold-based modeling framework to systematically model viewers' watching behaviors. Guided by the theory of hedonic decline, we further model the process of viewers' preference decline during watching each live stream with consideration of live interactions, shedding light on the roles of different kinds of live interactions on viewers' watching behaviors. Comprehensive experiments conducted on a real-world data set demonstrate that our proposed framework can enhance both watching duration prediction and live stream recommendation. Besides, our proposed framework sheds light on understanding and explanation of viewers' watching behaviors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
未来可以完成签到,获得积分10
2秒前
2秒前
2秒前
3秒前
conker完成签到,获得积分10
4秒前
5秒前
5秒前
6秒前
泽锦臻完成签到 ,获得积分10
6秒前
Dong完成签到 ,获得积分10
6秒前
sword发布了新的文献求助10
6秒前
liwai发布了新的文献求助10
7秒前
戚俶发布了新的文献求助10
8秒前
Luffa完成签到,获得积分10
8秒前
supertkeb发布了新的文献求助30
9秒前
10秒前
无花果应助sylnd126采纳,获得10
10秒前
隐形曼青应助y彤采纳,获得10
10秒前
zjrh发布了新的文献求助10
10秒前
song发布了新的文献求助10
11秒前
姜姜发布了新的文献求助10
11秒前
山丘发布了新的文献求助30
12秒前
Orange应助侯博文采纳,获得20
13秒前
小熊发布了新的文献求助10
13秒前
14秒前
yee发布了新的文献求助10
14秒前
小汤啦啦啦完成签到,获得积分20
14秒前
15秒前
liwai完成签到,获得积分20
17秒前
dfggb发布了新的文献求助10
18秒前
阿狸贱贱发布了新的文献求助20
19秒前
cocolu举报活泼的幼蓉求助涉嫌违规
19秒前
19秒前
20秒前
21秒前
22秒前
22秒前
22秒前
元友容发布了新的文献求助10
22秒前
23秒前
高分求助中
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger Heßler, Claudia, Rud 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
ANSYS Workbench基础教程与实例详解 500
Spatial Political Economy: Uneven Development and the Production of Nature in Chile 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3325757
求助须知:如何正确求助?哪些是违规求助? 2956361
关于积分的说明 8580480
捐赠科研通 2634354
什么是DOI,文献DOI怎么找? 1441917
科研通“疑难数据库(出版商)”最低求助积分说明 667974
邀请新用户注册赠送积分活动 654856