Mind the Gap: Learning Modality-Agnostic Representations With a Cross-Modality UNet

模态(人机交互) 计算机科学 人工智能
作者
Xin Niu,Enyi Li,Jinchao Liu,Yan Wang,Margarita Osadchy,Yongchun Fang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 655-670 被引量:3
标识
DOI:10.1109/tip.2023.3348656
摘要

Cross-modality recognition has many important applications in science, law enforcement and entertainment. Popular methods to bridge the modality gap include reducing the distributional differences of representations of different modalities, learning indistinguishable representations or explicit modality transfer. The first two approaches suffer from the loss of discriminant information while removing the modality-specific variations. The third one heavily relies on the successful modality transfer, could face catastrophic performance drop when explicit modality transfers are not possible or difficult. To tackle this problem, we proposed a compact encoder-decoder neural module (cmUNet) to learn modality-agnostic representations while retaining identity-related information. This is achieved through cross-modality transformation and in-modality reconstruction, enhanced by an adversarial/perceptual loss which encourages indistinguishability of representations in the original sample space. For cross-modality matching, we propose MarrNet where cmUNet is connected to a standard feature extraction network which takes as inputs the modality-agnostic representations and outputs similarity scores for matching. We validated our method on five challenging tasks, namely Raman-infrared spectrum matching, cross-modality person re-identification and heterogeneous (photo-sketch, visible-near infrared and visible-thermal) face recognition, where MarrNet showed superior performance compared to state-of-the-art methods. Furthermore, it is observed that a cross-modality matching method could be biased to extract discriminant information from partial or even wrong regions, due to incompetence of dealing with modality gaps, which subsequently leads to poor generalization. We show that robustness to occlusions can be an indicator of whether a method can well bridge the modality gap. This, to our knowledge, has been largely neglected in the previous works. Our experiments demonstrated that MarrNet exhibited excellent robustness against disguises and occlusions, and outperformed existing methods with a large margin (>10%). The proposed cmUNet is a meta-approach and can be used as a building block for various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴彦祖发布了新的文献求助10
1秒前
聪明白秋完成签到,获得积分10
1秒前
兜里面有怪兽完成签到,获得积分10
2秒前
Rondab应助沉海采纳,获得10
2秒前
烟花应助沉海采纳,获得30
2秒前
4秒前
4秒前
5秒前
安详的语蕊完成签到,获得积分10
5秒前
杰克李李完成签到,获得积分10
6秒前
桐桐应助hjb采纳,获得10
6秒前
斯文败类应助MOMO采纳,获得10
6秒前
大河向东刘先生完成签到,获得积分10
6秒前
英俊的铭应助满天星采纳,获得10
6秒前
科学家完成签到,获得积分10
7秒前
zf发布了新的文献求助10
9秒前
yewungs发布了新的文献求助10
9秒前
清风发布了新的文献求助10
10秒前
10秒前
Lucas应助qq采纳,获得10
11秒前
11秒前
程栀发布了新的文献求助10
12秒前
LANER完成签到 ,获得积分10
14秒前
久久完成签到,获得积分10
15秒前
领导范儿应助花花采纳,获得10
16秒前
16秒前
王小西发布了新的文献求助20
17秒前
18秒前
zf完成签到,获得积分10
18秒前
Vincent发布了新的文献求助10
19秒前
qq发布了新的文献求助30
19秒前
19秒前
19秒前
无花果应助嗷嗷采纳,获得10
20秒前
MOMO发布了新的文献求助10
21秒前
99发布了新的文献求助10
21秒前
踏实谷蓝完成签到 ,获得积分10
22秒前
Archy完成签到,获得积分10
22秒前
23秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3992327
求助须知:如何正确求助?哪些是违规求助? 3533320
关于积分的说明 11261997
捐赠科研通 3272795
什么是DOI,文献DOI怎么找? 1805880
邀请新用户注册赠送积分活动 882732
科研通“疑难数据库(出版商)”最低求助积分说明 809459