Mind the Gap: Learning Modality-Agnostic Representations With a Cross-Modality UNet

模态(人机交互) 计算机科学 人工智能
作者
Xin Niu,Enyi Li,Jinchao Liu,Yan Wang,Margarita Osadchy,Yongchun Fang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 655-670 被引量:3
标识
DOI:10.1109/tip.2023.3348656
摘要

Cross-modality recognition has many important applications in science, law enforcement and entertainment. Popular methods to bridge the modality gap include reducing the distributional differences of representations of different modalities, learning indistinguishable representations or explicit modality transfer. The first two approaches suffer from the loss of discriminant information while removing the modality-specific variations. The third one heavily relies on the successful modality transfer, could face catastrophic performance drop when explicit modality transfers are not possible or difficult. To tackle this problem, we proposed a compact encoder-decoder neural module (cmUNet) to learn modality-agnostic representations while retaining identity-related information. This is achieved through cross-modality transformation and in-modality reconstruction, enhanced by an adversarial/perceptual loss which encourages indistinguishability of representations in the original sample space. For cross-modality matching, we propose MarrNet where cmUNet is connected to a standard feature extraction network which takes as inputs the modality-agnostic representations and outputs similarity scores for matching. We validated our method on five challenging tasks, namely Raman-infrared spectrum matching, cross-modality person re-identification and heterogeneous (photo-sketch, visible-near infrared and visible-thermal) face recognition, where MarrNet showed superior performance compared to state-of-the-art methods. Furthermore, it is observed that a cross-modality matching method could be biased to extract discriminant information from partial or even wrong regions, due to incompetence of dealing with modality gaps, which subsequently leads to poor generalization. We show that robustness to occlusions can be an indicator of whether a method can well bridge the modality gap. This, to our knowledge, has been largely neglected in the previous works. Our experiments demonstrated that MarrNet exhibited excellent robustness against disguises and occlusions, and outperformed existing methods with a large margin (>10%). The proposed cmUNet is a meta-approach and can be used as a building block for various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
平安喜乐发布了新的文献求助10
刚刚
阿越发布了新的文献求助10
刚刚
0534335完成签到,获得积分10
1秒前
充电宝应助zj采纳,获得10
1秒前
小金胖子发布了新的文献求助10
2秒前
芝麻糊了发布了新的文献求助100
2秒前
顾矜应助失眠的丹翠采纳,获得10
3秒前
lzh完成签到,获得积分20
3秒前
Willow完成签到,获得积分10
3秒前
4秒前
彭于晏应助Heisenberg采纳,获得10
4秒前
4秒前
Times完成签到 ,获得积分10
4秒前
星辰大海应助派提克采纳,获得10
5秒前
小白发布了新的文献求助10
5秒前
完美世界应助默默的映波采纳,获得10
5秒前
123zyuyu完成签到,获得积分10
6秒前
6秒前
7秒前
Owen应助ZSJ采纳,获得10
8秒前
WN发布了新的文献求助10
8秒前
刘西西完成签到,获得积分10
8秒前
焦明准完成签到,获得积分10
8秒前
王不留行完成签到,获得积分10
8秒前
9秒前
小金胖子完成签到,获得积分10
11秒前
赛赛发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
hyh发布了新的文献求助10
12秒前
科研通AI2S应助Doris采纳,获得10
13秒前
111111111完成签到,获得积分20
13秒前
小二郎应助11112321321采纳,获得10
13秒前
传奇3应助莹莹啊采纳,获得10
13秒前
14秒前
加鲁鲁lu完成签到,获得积分10
14秒前
善学以致用应助QP采纳,获得10
14秒前
小胡啊完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5406217
求助须知:如何正确求助?哪些是违规求助? 4524325
关于积分的说明 14097517
捐赠科研通 4438110
什么是DOI,文献DOI怎么找? 2435966
邀请新用户注册赠送积分活动 1428100
关于科研通互助平台的介绍 1406280