Mind the Gap: Learning Modality-Agnostic Representations With a Cross-Modality UNet

模态(人机交互) 计算机科学 人工智能
作者
Xin Niu,Enyi Li,Jinchao Liu,Yan Wang,Margarita Osadchy,Yongchun Fang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 655-670 被引量:3
标识
DOI:10.1109/tip.2023.3348656
摘要

Cross-modality recognition has many important applications in science, law enforcement and entertainment. Popular methods to bridge the modality gap include reducing the distributional differences of representations of different modalities, learning indistinguishable representations or explicit modality transfer. The first two approaches suffer from the loss of discriminant information while removing the modality-specific variations. The third one heavily relies on the successful modality transfer, could face catastrophic performance drop when explicit modality transfers are not possible or difficult. To tackle this problem, we proposed a compact encoder-decoder neural module (cmUNet) to learn modality-agnostic representations while retaining identity-related information. This is achieved through cross-modality transformation and in-modality reconstruction, enhanced by an adversarial/perceptual loss which encourages indistinguishability of representations in the original sample space. For cross-modality matching, we propose MarrNet where cmUNet is connected to a standard feature extraction network which takes as inputs the modality-agnostic representations and outputs similarity scores for matching. We validated our method on five challenging tasks, namely Raman-infrared spectrum matching, cross-modality person re-identification and heterogeneous (photo-sketch, visible-near infrared and visible-thermal) face recognition, where MarrNet showed superior performance compared to state-of-the-art methods. Furthermore, it is observed that a cross-modality matching method could be biased to extract discriminant information from partial or even wrong regions, due to incompetence of dealing with modality gaps, which subsequently leads to poor generalization. We show that robustness to occlusions can be an indicator of whether a method can well bridge the modality gap. This, to our knowledge, has been largely neglected in the previous works. Our experiments demonstrated that MarrNet exhibited excellent robustness against disguises and occlusions, and outperformed existing methods with a large margin (>10%). The proposed cmUNet is a meta-approach and can be used as a building block for various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
caicai完成签到,获得积分10
2秒前
FFFFF发布了新的文献求助10
2秒前
Brocade发布了新的文献求助10
2秒前
Jojo发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
CipherSage应助xx采纳,获得10
5秒前
5秒前
5秒前
5秒前
科研通AI6应助美丽的周采纳,获得150
6秒前
WSCNOK发布了新的文献求助10
6秒前
Jojo完成签到,获得积分10
8秒前
冰淇琳发布了新的文献求助10
9秒前
xiaojiezhang发布了新的文献求助10
9秒前
LL发布了新的文献求助10
10秒前
10秒前
10秒前
fan关闭了fan文献求助
10秒前
11秒前
乐乐应助ddup采纳,获得20
11秒前
等待的mango应助凯凯采纳,获得10
12秒前
彭于晏应助凯凯采纳,获得10
12秒前
12秒前
caicai发布了新的文献求助10
13秒前
gy完成签到,获得积分10
14秒前
Asura完成签到,获得积分10
14秒前
科目三应助WSCNOK采纳,获得10
15秒前
pp发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
18秒前
xiaojiezhang发布了新的文献求助10
18秒前
19秒前
1Yer6完成签到 ,获得积分10
19秒前
20秒前
震速流完成签到 ,获得积分10
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458536
求助须知:如何正确求助?哪些是违规求助? 4564580
关于积分的说明 14295673
捐赠科研通 4489566
什么是DOI,文献DOI怎么找? 2459081
邀请新用户注册赠送积分活动 1448892
关于科研通互助平台的介绍 1424474