Mind the Gap: Learning Modality-Agnostic Representations With a Cross-Modality UNet

模态(人机交互) 计算机科学 人工智能
作者
Xin Niu,Enyi Li,Jinchao Liu,Yan Wang,Margarita Osadchy,Yongchun Fang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 655-670 被引量:3
标识
DOI:10.1109/tip.2023.3348656
摘要

Cross-modality recognition has many important applications in science, law enforcement and entertainment. Popular methods to bridge the modality gap include reducing the distributional differences of representations of different modalities, learning indistinguishable representations or explicit modality transfer. The first two approaches suffer from the loss of discriminant information while removing the modality-specific variations. The third one heavily relies on the successful modality transfer, could face catastrophic performance drop when explicit modality transfers are not possible or difficult. To tackle this problem, we proposed a compact encoder-decoder neural module (cmUNet) to learn modality-agnostic representations while retaining identity-related information. This is achieved through cross-modality transformation and in-modality reconstruction, enhanced by an adversarial/perceptual loss which encourages indistinguishability of representations in the original sample space. For cross-modality matching, we propose MarrNet where cmUNet is connected to a standard feature extraction network which takes as inputs the modality-agnostic representations and outputs similarity scores for matching. We validated our method on five challenging tasks, namely Raman-infrared spectrum matching, cross-modality person re-identification and heterogeneous (photo-sketch, visible-near infrared and visible-thermal) face recognition, where MarrNet showed superior performance compared to state-of-the-art methods. Furthermore, it is observed that a cross-modality matching method could be biased to extract discriminant information from partial or even wrong regions, due to incompetence of dealing with modality gaps, which subsequently leads to poor generalization. We show that robustness to occlusions can be an indicator of whether a method can well bridge the modality gap. This, to our knowledge, has been largely neglected in the previous works. Our experiments demonstrated that MarrNet exhibited excellent robustness against disguises and occlusions, and outperformed existing methods with a large margin (>10%). The proposed cmUNet is a meta-approach and can be used as a building block for various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助追寻的宛er采纳,获得10
刚刚
1秒前
储物间完成签到,获得积分10
1秒前
1秒前
hdbys发布了新的文献求助30
1秒前
1秒前
RNNNLL完成签到,获得积分10
2秒前
4秒前
4秒前
4秒前
长夜变清早完成签到,获得积分10
4秒前
4秒前
zgd发布了新的文献求助10
4秒前
在水一方应助sos采纳,获得10
4秒前
嘻嘻发布了新的文献求助10
4秒前
谷雨秋发布了新的文献求助10
7秒前
7秒前
任性的梦菲完成签到,获得积分10
8秒前
9秒前
今后应助张雯雯采纳,获得10
9秒前
量子星尘发布了新的文献求助80
10秒前
Ai77发布了新的文献求助10
10秒前
Sallxy发布了新的文献求助10
10秒前
Dormantparner发布了新的文献求助10
10秒前
11秒前
KouZL发布了新的文献求助30
11秒前
科研通AI6应助满家归寻采纳,获得10
11秒前
12秒前
一口气吃七碗饭完成签到 ,获得积分10
12秒前
12秒前
13秒前
科研通AI6应助朴实涵菡采纳,获得10
13秒前
13秒前
小马甲应助坚定茉莉采纳,获得10
14秒前
疯狂的晓山完成签到,获得积分10
14秒前
fanqinge完成签到,获得积分20
14秒前
14秒前
15秒前
斯文静竹发布了新的文献求助10
15秒前
小青椒应助xzy998采纳,获得30
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Guidelines for Characterization of Gas Turbine Engine Total-Pressure, Planar-Wave, and Total-Temperature Inlet-Flow Distortion 300
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4604564
求助须知:如何正确求助?哪些是违规求助? 4012871
关于积分的说明 12425263
捐赠科研通 3693482
什么是DOI,文献DOI怎么找? 2036342
邀请新用户注册赠送积分活动 1069364
科研通“疑难数据库(出版商)”最低求助积分说明 953871