亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Mind the Gap: Learning Modality-Agnostic Representations With a Cross-Modality UNet

模态(人机交互) 计算机科学 人工智能
作者
Xin Niu,Enyi Li,Jinchao Liu,Yan Wang,Margarita Osadchy,Yongchun Fang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 655-670
标识
DOI:10.1109/tip.2023.3348656
摘要

Cross-modality recognition has many important applications in science, law enforcement and entertainment. Popular methods to bridge the modality gap include reducing the distributional differences of representations of different modalities, learning indistinguishable representations or explicit modality transfer. The first two approaches suffer from the loss of discriminant information while removing the modality-specific variations. The third one heavily relies on the successful modality transfer, could face catastrophic performance drop when explicit modality transfers are not possible or difficult. To tackle this problem, we proposed a compact encoder-decoder neural module (cmUNet) to learn modality-agnostic representations while retaining identity-related information. This is achieved through cross-modality transformation and in-modality reconstruction, enhanced by an adversarial/perceptual loss which encourages indistinguishability of representations in the original sample space. For cross-modality matching, we propose MarrNet where cmUNet is connected to a standard feature extraction network which takes as inputs the modality-agnostic representations and outputs similarity scores for matching. We validated our method on five challenging tasks, namely Raman-infrared spectrum matching, cross-modality person re-identification and heterogeneous (photo-sketch, visible-near infrared and visible-thermal) face recognition, where MarrNet showed superior performance compared to state-of-the-art methods. Furthermore, it is observed that a cross-modality matching method could be biased to extract discriminant information from partial or even wrong regions, due to incompetence of dealing with modality gaps, which subsequently leads to poor generalization. We show that robustness to occlusions can be an indicator of whether a method can well bridge the modality gap. This, to our knowledge, has been largely neglected in the previous works. Our experiments demonstrated that MarrNet exhibited excellent robustness against disguises and occlusions, and outperformed existing methods with a large margin (>10%). The proposed cmUNet is a meta-approach and can be used as a building block for various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
早晚完成签到 ,获得积分10
6秒前
hahaha完成签到,获得积分10
19秒前
北海西贝完成签到,获得积分10
21秒前
飞快的孱完成签到,获得积分10
22秒前
26秒前
消消乐完成签到,获得积分10
29秒前
DamenS发布了新的文献求助10
30秒前
吐丝麵包完成签到 ,获得积分10
30秒前
迷你的靖雁完成签到,获得积分10
32秒前
superfatcat完成签到,获得积分10
33秒前
38秒前
棠梨子完成签到 ,获得积分10
39秒前
40秒前
负责冰凡发布了新的文献求助10
44秒前
skyinner完成签到 ,获得积分10
45秒前
pegasus0802完成签到,获得积分10
45秒前
陶醉的钢笔完成签到 ,获得积分10
49秒前
49秒前
关关完成签到 ,获得积分10
50秒前
卧镁铀钳完成签到 ,获得积分10
51秒前
MMMMMeng完成签到,获得积分10
57秒前
1分钟前
1分钟前
小杨爱吃羊完成签到 ,获得积分10
1分钟前
阳光沛凝发布了新的文献求助10
1分钟前
Ava应助古美路德赫亚采纳,获得10
1分钟前
lvzhechen发布了新的文献求助10
1分钟前
1分钟前
古美路德赫亚完成签到,获得积分10
1分钟前
范丞丞完成签到 ,获得积分10
1分钟前
1分钟前
财年完成签到,获得积分10
1分钟前
田乐天完成签到 ,获得积分10
1分钟前
tszjw168完成签到 ,获得积分10
1分钟前
Dana完成签到 ,获得积分10
1分钟前
1分钟前
七草肃完成签到,获得积分10
1分钟前
悦果完成签到 ,获得积分10
1分钟前
机智乐珍完成签到,获得积分20
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
Education and Upward Social Mobility in China: Imagining Positive Sociology with Bourdieu 500
Zeitschrift für Orient-Archäologie 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3353435
求助须知:如何正确求助?哪些是违规求助? 2978016
关于积分的说明 8683528
捐赠科研通 2659372
什么是DOI,文献DOI怎么找? 1456201
科研通“疑难数据库(出版商)”最低求助积分说明 674297
邀请新用户注册赠送积分活动 665016