Mind the Gap: Learning Modality-Agnostic Representations With a Cross-Modality UNet

模态(人机交互) 计算机科学 人工智能
作者
Xin Niu,Enyi Li,Jinchao Liu,Yan Wang,Margarita Osadchy,Yongchun Fang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:33: 655-670 被引量:3
标识
DOI:10.1109/tip.2023.3348656
摘要

Cross-modality recognition has many important applications in science, law enforcement and entertainment. Popular methods to bridge the modality gap include reducing the distributional differences of representations of different modalities, learning indistinguishable representations or explicit modality transfer. The first two approaches suffer from the loss of discriminant information while removing the modality-specific variations. The third one heavily relies on the successful modality transfer, could face catastrophic performance drop when explicit modality transfers are not possible or difficult. To tackle this problem, we proposed a compact encoder-decoder neural module (cmUNet) to learn modality-agnostic representations while retaining identity-related information. This is achieved through cross-modality transformation and in-modality reconstruction, enhanced by an adversarial/perceptual loss which encourages indistinguishability of representations in the original sample space. For cross-modality matching, we propose MarrNet where cmUNet is connected to a standard feature extraction network which takes as inputs the modality-agnostic representations and outputs similarity scores for matching. We validated our method on five challenging tasks, namely Raman-infrared spectrum matching, cross-modality person re-identification and heterogeneous (photo-sketch, visible-near infrared and visible-thermal) face recognition, where MarrNet showed superior performance compared to state-of-the-art methods. Furthermore, it is observed that a cross-modality matching method could be biased to extract discriminant information from partial or even wrong regions, due to incompetence of dealing with modality gaps, which subsequently leads to poor generalization. We show that robustness to occlusions can be an indicator of whether a method can well bridge the modality gap. This, to our knowledge, has been largely neglected in the previous works. Our experiments demonstrated that MarrNet exhibited excellent robustness against disguises and occlusions, and outperformed existing methods with a large margin (>10%). The proposed cmUNet is a meta-approach and can be used as a building block for various applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
peanut完成签到,获得积分10
刚刚
隐形曼青应助Zhao采纳,获得10
刚刚
刚刚
刚刚
2秒前
传奇3应助擦撒擦擦采纳,获得10
2秒前
羞涩的寒松完成签到,获得积分10
2秒前
情怀应助昭奚采纳,获得10
3秒前
科目三应助swgcsqy采纳,获得10
3秒前
Desheng发布了新的文献求助50
3秒前
稳赚赚完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
Qinghen完成签到,获得积分10
5秒前
5秒前
彭幽完成签到,获得积分10
5秒前
可爱的函函应助123采纳,获得10
6秒前
蜀安应助柔弱的友瑶采纳,获得30
6秒前
6秒前
6秒前
馒头发布了新的文献求助10
6秒前
Akim应助简单平蓝采纳,获得10
6秒前
真实的咖啡豆完成签到,获得积分10
6秒前
7秒前
北枳发布了新的文献求助10
7秒前
7秒前
李健的小迷弟应助cc采纳,获得10
8秒前
田様应助zw采纳,获得10
8秒前
8秒前
Ouou发布了新的文献求助10
8秒前
8秒前
8秒前
爱学习的小张完成签到,获得积分10
9秒前
清爽的雨竹完成签到,获得积分10
9秒前
9秒前
式微发布了新的文献求助10
9秒前
qwe123发布了新的文献求助10
9秒前
幸福的绿海完成签到,获得积分20
10秒前
xiaxia完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
Efficacy of sirolimus in Klippel-Trenaunay syndrome 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5479273
求助须知:如何正确求助?哪些是违规求助? 4580889
关于积分的说明 14377069
捐赠科研通 4509384
什么是DOI,文献DOI怎么找? 2471269
邀请新用户注册赠送积分活动 1457785
关于科研通互助平台的介绍 1431619