Identifying Key Financial Variables Predicting the Financial Performance of Construction Companies

鉴定(生物学) 财务报表 财务比率 财务 预测建模 制造业 业务 回归分析 财务建模 财务分析 变量 精算学 营销 会计 计算机科学 植物 审计 机器学习 生物
作者
Wonkyoung Seo,Byungil Kim,Su Sik Bang,Youngcheol Kang
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:150 (3)
标识
DOI:10.1061/jcemd4.coeng-13959
摘要

The purpose of this study is to develop a model for predicting the financial performance of construction companies based on their financial statement data. Several models for predicting financial performance have been developed in the general finance field over the past few decades. However, these conventional models are not always suitable for the construction industry, which operates on a project-based system. While there have been attempts to develop financial models specific to the construction industry, the proposed model in this study stands apart, as it is designed based on the differences between the construction and manufacturing industries. For this research objective, financial variables presumably affecting a construction company's financial performance are identified through literature review, industry expert interviews, and statistical tests, which explore differences between construction and manufacturing companies' financial characteristics. Taking the identified variables from these approaches, this study proposed a prediction model for the return on asset and enterprise value per share of construction companies. The prediction model was applied to construction and manufacturing companies' financial data, and it was verified that it showed significantly higher explanatory power in the construction data. In addition, a panel regression analysis was applied to examine how each variable is correlated with the financial performance of construction companies. Based on the identification of difference between the construction and manufacturing sectors, this study developed a more appropriate explanation model for the financial performance of construction companies. In this regard, this study adds empirical evidence that the factors influencing financial performance vary by industry. Further, the identification of financial variables that affect the performance of construction companies can assist practitioners in establishing investment and financial strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
李佳薇发布了新的文献求助10
2秒前
充电宝应助眠羊采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
小劳完成签到,获得积分10
8秒前
福娃完成签到,获得积分10
10秒前
olivia完成签到 ,获得积分10
12秒前
一万朵蝴蝶完成签到,获得积分10
12秒前
12秒前
13秒前
13秒前
orixero应助冷艳惜梦采纳,获得10
14秒前
爆米花应助yan采纳,获得10
15秒前
田様应助贤弟采纳,获得10
15秒前
16秒前
jiayouya发布了新的文献求助10
17秒前
眠羊发布了新的文献求助10
18秒前
怕孤单的忆灵关注了科研通微信公众号
18秒前
尹天扬完成签到,获得积分10
18秒前
C22完成签到,获得积分10
19秒前
FashionBoy应助zfihead采纳,获得10
19秒前
19秒前
JG完成签到,获得积分10
19秒前
22秒前
23秒前
王凯完成签到,获得积分10
24秒前
24秒前
huqing发布了新的文献求助60
25秒前
25秒前
ddboys1009发布了新的文献求助10
25秒前
26秒前
C22发布了新的文献求助10
27秒前
王凯发布了新的文献求助10
28秒前
冷艳惜梦发布了新的文献求助10
28秒前
cinnamonbrd发布了新的文献求助10
29秒前
29秒前
30秒前
30秒前
30秒前
31秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604157
求助须知:如何正确求助?哪些是违规求助? 4688985
关于积分的说明 14857229
捐赠科研通 4696839
什么是DOI,文献DOI怎么找? 2541204
邀请新用户注册赠送积分活动 1507328
关于科研通互助平台的介绍 1471851