Identifying Key Financial Variables Predicting the Financial Performance of Construction Companies

鉴定(生物学) 财务报表 财务比率 财务 预测建模 制造业 业务 回归分析 财务建模 财务分析 变量 精算学 营销 会计 计算机科学 植物 审计 机器学习 生物
作者
Wonkyoung Seo,Byungil Kim,Su Sik Bang,Youngcheol Kang
出处
期刊:Journal of the Construction Division and Management [American Society of Civil Engineers]
卷期号:150 (3)
标识
DOI:10.1061/jcemd4.coeng-13959
摘要

The purpose of this study is to develop a model for predicting the financial performance of construction companies based on their financial statement data. Several models for predicting financial performance have been developed in the general finance field over the past few decades. However, these conventional models are not always suitable for the construction industry, which operates on a project-based system. While there have been attempts to develop financial models specific to the construction industry, the proposed model in this study stands apart, as it is designed based on the differences between the construction and manufacturing industries. For this research objective, financial variables presumably affecting a construction company's financial performance are identified through literature review, industry expert interviews, and statistical tests, which explore differences between construction and manufacturing companies' financial characteristics. Taking the identified variables from these approaches, this study proposed a prediction model for the return on asset and enterprise value per share of construction companies. The prediction model was applied to construction and manufacturing companies' financial data, and it was verified that it showed significantly higher explanatory power in the construction data. In addition, a panel regression analysis was applied to examine how each variable is correlated with the financial performance of construction companies. Based on the identification of difference between the construction and manufacturing sectors, this study developed a more appropriate explanation model for the financial performance of construction companies. In this regard, this study adds empirical evidence that the factors influencing financial performance vary by industry. Further, the identification of financial variables that affect the performance of construction companies can assist practitioners in establishing investment and financial strategies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
nanali19完成签到,获得积分10
刚刚
hailiangzheng完成签到,获得积分10
1秒前
东单的单车发布了新的文献求助150
1秒前
2秒前
2秒前
Shan5发布了新的文献求助30
2秒前
syn发布了新的文献求助10
3秒前
陈瞿硕完成签到,获得积分10
3秒前
4秒前
5秒前
5秒前
6秒前
科研通AI6应助感动苡采纳,获得10
6秒前
轨迹应助rsq采纳,获得20
6秒前
6秒前
量子星尘发布了新的文献求助10
6秒前
7秒前
8秒前
Hour发布了新的文献求助10
8秒前
misschiu发布了新的文献求助10
8秒前
情怀应助美好斓采纳,获得30
8秒前
量子星尘发布了新的文献求助10
9秒前
zhangxuhns完成签到,获得积分10
10秒前
Helene完成签到,获得积分10
10秒前
陈晶发布了新的文献求助10
11秒前
11发布了新的文献求助10
12秒前
13秒前
13秒前
Lmy完成签到 ,获得积分10
13秒前
星辰大海完成签到,获得积分10
14秒前
15秒前
15秒前
15秒前
15秒前
无极微光应助李博文采纳,获得20
16秒前
16秒前
芳菲依旧应助真实的咖啡采纳,获得30
17秒前
整箱完成签到 ,获得积分10
17秒前
Anima发布了新的文献求助10
18秒前
小暴发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5666454
求助须知:如何正确求助?哪些是违规求助? 4882107
关于积分的说明 15117498
捐赠科研通 4825502
什么是DOI,文献DOI怎么找? 2583441
邀请新用户注册赠送积分活动 1537599
关于科研通互助平台的介绍 1495756