Linear-regression-based algorithms can succeed at identifying microbial functional groups despite the nonlinearity of ecological function

功能(生物学) 计算机科学 回归 任务(项目管理) 机器学习 钥匙(锁) 人工智能 生态学 数学 统计 生物 工程类 进化生物学 计算机安全 系统工程
作者
Yuanchen Zhao,Otto X. Cordero,Mikhail Tikhonov
标识
DOI:10.1101/2024.01.21.576558
摘要

Abstract Microbial communities play key roles across diverse environments. Predicting their function and dynamics is a key goal of microbial ecology, but detailed microscopic descriptions of these systems can be prohibitively complex. One approach to deal with this complexity is to resort to coarser representations. Several approaches have sought to identify useful groupings of microbial species in a data-driven way. Of these, recent work has claimed some empirical success at de novo discovery of coarse representations predictive of a given function using methods as simple as a linear regression, against multiple groups of species or even a single such group (the EQO approach of Shan et al . [25]). This success seems puzzling, since modeling community function as a linear combination of contributions of individual species appears simplistic. However, the task of identifying a predictive coarsening of an ecosystem is distinct from the task of predicting the function well, and it is conceivable that the former could be accomplished by a simpler methodology than the latter. Here, we use the resource competition framework to design a model where the “correct” grouping to be discovered is well-defined, and use synthetic data to evaluate and compare three regression-based methods, namely, two proposed previously and one we introduce. We find that regression-based methods can recover the groupings even when the function is manifestly nonlinear; that multi-group methods offer an advantage over a single-group EQO; and crucially, that simpler (linear) methods can outperform more complex ones. Author summary Natural microbial communities are highly complex, making predictive modeling difficult. One appealing approach is to make their description less detailed, rendering modeling more tractable while hopefully still retaining some predictive power. The Tree of Life naturally provides one possible method for building coarser descriptions (instead of thousands of strains, we could think about hundreds of species; or dozens of families). However, it is known that useful descriptions need not be taxonomically coherent, as illustrated, for example, by the so-called functional guilds. This prompted the development of computational methods seeking to propose candidate groupings in a data-driven manner. In this computational study, we examine one class of such methods, recently proposed in the microbial context. Quantitatively testing their performance can be difficult, as the answer they “should” recover is often unknown. Here, we overcome this difficulty by testing these methods on synthetic data from a model where the ground truth is known by construction. Curiously, we demonstrate that simpler approaches, rather than suffering from this simplicity, can in fact be more robust.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BAi完成签到,获得积分10
刚刚
baihehuakai完成签到 ,获得积分10
1秒前
星空完成签到 ,获得积分10
1秒前
Goodenough完成签到 ,获得积分10
3秒前
Lucas应助浏阳河采纳,获得10
3秒前
科研通AI2S应助BAi采纳,获得10
5秒前
瀚子完成签到,获得积分10
5秒前
wqq完成签到 ,获得积分10
6秒前
aaronwang完成签到 ,获得积分10
8秒前
平常莹芝完成签到,获得积分10
10秒前
liuhan完成签到 ,获得积分10
11秒前
13秒前
风风完成签到 ,获得积分10
13秒前
俭朴的世立完成签到,获得积分10
14秒前
lin完成签到,获得积分10
17秒前
aaronwang关注了科研通微信公众号
17秒前
浏阳河发布了新的文献求助10
18秒前
酷炫的红牛完成签到,获得积分10
19秒前
19秒前
wuyan204完成签到 ,获得积分10
19秒前
Alexbirchurros完成签到 ,获得积分10
19秒前
xinyi完成签到,获得积分10
22秒前
大模型应助zyy_luck采纳,获得10
24秒前
达古冰川发布了新的文献求助10
24秒前
冷傲凝琴完成签到,获得积分10
25秒前
ykiiii完成签到,获得积分10
25秒前
浏阳河完成签到,获得积分10
25秒前
小树叶完成签到 ,获得积分10
26秒前
Cao完成签到 ,获得积分10
28秒前
30秒前
阳光的幻雪完成签到 ,获得积分10
36秒前
lxy2002完成签到,获得积分10
36秒前
右旋王小二完成签到,获得积分10
37秒前
殷勤的梦秋完成签到,获得积分10
37秒前
走四方应助科研通管家采纳,获得10
38秒前
Xtals应助科研通管家采纳,获得10
38秒前
天天快乐应助科研通管家采纳,获得10
38秒前
走四方应助科研通管家采纳,获得10
38秒前
宁少爷应助科研通管家采纳,获得40
39秒前
我是老大应助科研通管家采纳,获得10
39秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139720
求助须知:如何正确求助?哪些是违规求助? 2790623
关于积分的说明 7795870
捐赠科研通 2447082
什么是DOI,文献DOI怎么找? 1301563
科研通“疑难数据库(出版商)”最低求助积分说明 626274
版权声明 601176