亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Continuous Flow-Electrochemical Coupling Technology for Metal Nanoparticle Synthesis: Applications for Catalysis

电化学 联轴节(管道) 材料科学 纳米颗粒 连续流动 催化作用 金属 纳米技术 流量(数学) 化学 冶金 机械 电极 物理 有机化学 物理化学
作者
Jiashu Yuan,Laihao Liu,Tongtong Gan,Yejian Xue,Yonggao Xia
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:7 (3): 2796-2805 被引量:1
标识
DOI:10.1021/acsanm.3c05085
摘要

Nanometallic materials (nano-Ms) have garnered considerable attention owing to their unique size-dependent properties. However, the complexity and limitations of the techniques used to prepare nano-Ms have hindered their further development. Here, a simple and scalable technological strategy is proposed for the synthesis of ultrafine nanometals. The metal oxides (Co3O4, NiO, and CuO) with sizes ranging from approximately 100 to 300 nm were converted into ultrafine nanometals (Co, Ni, and Cu) of around 5 nm through a continuous flow-electrochemical coupling reactor. This transformation occurred via a conversion reaction during limited galvanostatic discharge/charge cycles. The ultrafine nanometals produced through the continuous flow-electrochemical coupling reaction technology in a continuous flow-electrochemical reactor exhibited a substantial increase in the surface area and grain boundaries due to the reduction in particle size. The increased electrocatalytic active sites allow the prepared ultrafine nanometals to possess excellent electrochemical oxygen evolution reaction activities. This strategy based on the continuous flow-electrochemical coupling reaction is not limited to the synthesis of Co, Ni, and Cu; it can be extended to other nanotransition metals as well. The outcome of this study provides a general strategy for the efficient synthesis of ultrafine nanometals with uniform ultrasmall particle sizes on a large scale, specifically tailored for electrocatalysis applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
11秒前
Huzhu发布了新的文献求助20
22秒前
47秒前
51秒前
53秒前
57秒前
zpf发布了新的文献求助10
58秒前
1分钟前
1分钟前
1分钟前
1分钟前
大熊完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Huzhu应助科研通管家采纳,获得10
1分钟前
Ccccn完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
噜噜晓完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
3分钟前
miaomiao发布了新的文献求助10
3分钟前
3分钟前
3分钟前
George完成签到,获得积分10
3分钟前
英姑应助科研通管家采纳,获得10
3分钟前
隐形曼青应助科研通管家采纳,获得10
3分钟前
漂亮夏兰完成签到 ,获得积分10
4分钟前
miaomiao完成签到,获得积分20
4分钟前
咎不可完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
聪明怜阳发布了新的文献求助10
4分钟前
科研通AI6应助WWJ采纳,获得10
4分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1041
睡眠呼吸障碍治疗学 600
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488594
求助须知:如何正确求助?哪些是违规求助? 4587405
关于积分的说明 14413853
捐赠科研通 4518799
什么是DOI,文献DOI怎么找? 2476092
邀请新用户注册赠送积分活动 1461552
关于科研通互助平台的介绍 1434505