Dual-directional small-sampling deep-learning modelling on co-flowing microfluidic droplet generation

微流控 深度学习 计算机科学 人工智能 机器学习 生物系统 纳米技术 材料科学 生物
作者
Ji‐Xiang Wang,Jian Qian,Hongmei Wang,Mengyuan Sun,Liangyu Wu,Mingliang Zhong,Yongping Chen,Yufeng Mao
出处
期刊:Chemical Engineering Journal [Elsevier]
卷期号:485: 149467-149467 被引量:3
标识
DOI:10.1016/j.cej.2024.149467
摘要

User-specified droplets generated by microfluidics are critical but requires intensive expertise and much time. Stimulated by data boosts from microfluidic experiments, deep learning has proven to be a powerful modeling approach in microfluidics with high accuracy. However, current deep learning approaches on microfluidics, emphasize droplet size prediction rather than actually obtaining droplets of the user-desired size. Such droplet size predictions invariably overlook the effect of the flow regime, a critical factor when determining the availability of the generated droplets because the flow regime influences the droplets' dispersity. In addition, the big data prerequisite in deep learning models prohibits its extensive application in microfluidics. In order to solve these problems, this paper combines our current extensive experimental data (extracted by the Hough transformer) and the experimental data from previous literature as a co-flowing microfluidics-based droplet database. Based on this database, we established a dual-directional deep learning model where the droplet size variable resides not only in the output (for prediction), but also in the input (for acquisition) when considering the effect of flow regime. The new integrated active learning model fundamentally reduces the training dataset without sacrificing accuracy, thus pioneering small-sampling deep learning modelling in microfluidics. Compared to the single-directional modelling approach, the proposed dual-directional modelling demonstrates obvious improvements where the average relative error is only 9.90 % (obtained droplet size compared to the desired size), an increase of 45.6% compared with that of the single-directional model. The improved deep learning methodology here offers a universally accurate model for co-flowing microfluidic-based droplet acquisitions. It also has great prospects of becoming a prominent data processing structure that boosts, and possibly transforms existing microfluidic research and related fields.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
SciGPT应助虎虎虎采纳,获得10
刚刚
苏满天完成签到,获得积分10
刚刚
UPUP0707发布了新的文献求助10
1秒前
1秒前
4秒前
XMUh发布了新的文献求助10
4秒前
深情安青应助mmmm采纳,获得10
4秒前
5秒前
大胆嘞完成签到,获得积分10
5秒前
fifteen应助橙子采纳,获得10
5秒前
panpan发布了新的文献求助10
6秒前
6秒前
7秒前
小辞芙芙完成签到 ,获得积分20
8秒前
8秒前
共享精神应助AptRank采纳,获得10
8秒前
8秒前
默默晓兰发布了新的文献求助10
9秒前
开心金牛完成签到,获得积分10
10秒前
10秒前
小轩子发布了新的文献求助10
11秒前
11秒前
萌代发布了新的文献求助10
12秒前
12秒前
13秒前
Akim应助an上人采纳,获得10
13秒前
SciGPT应助高大的曼寒采纳,获得10
14秒前
不停发布了新的文献求助10
15秒前
echo发布了新的文献求助10
16秒前
16秒前
深情安青应助博利采纳,获得10
17秒前
无花果应助萌代采纳,获得10
19秒前
WZ发布了新的文献求助10
20秒前
20秒前
20秒前
完美世界应助hann采纳,获得10
21秒前
22秒前
yxzha完成签到 ,获得积分10
22秒前
苦逼的科研人完成签到,获得积分10
23秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207057
求助须知:如何正确求助?哪些是违规求助? 2856477
关于积分的说明 8104841
捐赠科研通 2521574
什么是DOI,文献DOI怎么找? 1354913
科研通“疑难数据库(出版商)”最低求助积分说明 642098
邀请新用户注册赠送积分活动 613343