代谢物
代谢组学
化学
生物化学
食品科学
色谱法
作者
Zhiwei Ren,Hongjing Pan,Cheng Hu,Miao-Miao Le,Yanhua Long,Qian Xu,Zhongwen Xie,Tie-Jun Ling
标识
DOI:10.1016/j.foodres.2024.114094
摘要
The detailed dynamics of small molecular nonvolatile chemical and bacterial diversities, as well as their relationship are still unclear in the manufacturing process of Keemun black tea (KMBT). Herein, mass spectrometry-based untargeted metabolomics, Feature-based Molecular Networking (FBMN) and bacterial DNA amplicon sequencing were used to investigate the dense temporal samples of the manufacturing process. For the first time, we reveal that the pyrogallol-type catechins are oxidized asynchronously before catechol-type catechins during the black tea processing. Rolling is the key procedure for forming the small molecular nonvolatile metabolite profile (SMNMetProf), increasing the metabolite richness, and then shaping the bacterial community structure in the KMBT manufacturing process, which decreases both molecular weight and molecular polarity of the small molecular nonvolatile metabolites. The SMNMetProf of black tea is formed by the endogenous enzymatic oxidation of tea leaves, rather than bacterial fermentation.
科研通智能强力驱动
Strongly Powered by AbleSci AI