Optimized In Situ Doping Strategy Stabling Single-Crystal Ultrahigh-Nickel Layered Cathode Materials

材料科学 阴极 兴奋剂 微晶 煅烧 掺杂剂 Crystal(编程语言) 纳米技术 单晶 化学工程 光电子学 冶金 结晶学 化学 物理化学 催化作用 生物化学 工程类 计算机科学 程序设计语言
作者
Wei Wang,Yanan Zhou,Bao Zhang,Weiyuan Huang,Lei Cheng,Jing Wang,Xinyou He,Lei Yu,Zhiming Xiao,Jianguo Wen,Tongchao Liu,Khalil Amine,Xing Ou
出处
期刊:ACS Nano [American Chemical Society]
卷期号:18 (11): 8002-8016 被引量:15
标识
DOI:10.1021/acsnano.3c10986
摘要

Single-crystal Ni-rich cathodes offer promising prospects in mitigating intergranular microcracks and side reaction issues commonly encountered in conventional polycrystalline cathodes. However, the utilization of micrometer-sized single-crystal particles has raised concerns about sluggish Li+ diffusion kinetics and unfavorable structural degradation, particularly in high Ni content cathodes. Herein, we present an innovative in situ doping strategy to regulate the dominant growth of characteristic planes in the single-crystal precursor, leading to enhanced mechanical properties and effectively tackling the challenges posed by ultrahigh-nickel layered cathodes. Compared with the traditional dry-doping method, our in situ doping approach possesses a more homogeneous and consistent modifying effect from the inside out, ensuring the uniform distribution of doping ions with large radius (Nb, Zr, W, etc). This mitigates the generally unsatisfactory substitution effect, thereby minimizing undesirable coating layers induced by different solubilities during the calcination process. Additionally, the uniformly dispersed ions from this in situ doping are beneficial for alleviating the two-phase coexistence of H2/H3 and optimizing the Li+ concentration gradient during cycling, thus inhibiting the formation of intragranular cracks and interfacial deterioration. Consequently, the in situ doped cathodes demonstrate exceptional cycle retention and rate performance under various harsh testing conditions. Our optimized in situ doping strategy not only expands the application prospects of elemental doping but also offers a promising research direction for developing high-energy-density single-crystal cathodes with extended lifetime.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
逆行者完成签到,获得积分10
1秒前
wry完成签到,获得积分10
1秒前
happy发布了新的文献求助10
2秒前
一一发布了新的文献求助10
3秒前
3秒前
5秒前
manmanbuman完成签到,获得积分10
6秒前
禛禛发布了新的文献求助10
6秒前
科研通AI5应助雕龙采纳,获得10
6秒前
zimu012完成签到,获得积分10
7秒前
一味地丶逞强完成签到,获得积分10
8秒前
xlz110完成签到,获得积分10
8秒前
阔达的柠檬完成签到,获得积分10
8秒前
10秒前
宋百言发布了新的文献求助10
10秒前
子子发布了新的文献求助10
10秒前
慕青应助hony采纳,获得10
11秒前
11秒前
叶叶完成签到,获得积分10
11秒前
147完成签到,获得积分10
11秒前
麦芒拾音柴完成签到,获得积分10
11秒前
CT完成签到,获得积分10
12秒前
王诗瑶发布了新的文献求助30
13秒前
13秒前
mawenting完成签到,获得积分10
13秒前
14秒前
14秒前
Jianjingnan完成签到,获得积分20
15秒前
15秒前
15秒前
TT发布了新的文献求助10
16秒前
wualexandra完成签到,获得积分10
16秒前
毛球收藏家发布了新的文献求助200
16秒前
无花果应助科研通管家采纳,获得10
17秒前
深情安青应助科研通管家采纳,获得10
17秒前
无花果应助科研通管家采纳,获得10
17秒前
关关过应助科研通管家采纳,获得20
17秒前
17秒前
baochao完成签到 ,获得积分20
17秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 666
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3734798
求助须知:如何正确求助?哪些是违规求助? 3278733
关于积分的说明 10011078
捐赠科研通 2995408
什么是DOI,文献DOI怎么找? 1643417
邀请新用户注册赠送积分活动 781158
科研通“疑难数据库(出版商)”最低求助积分说明 749285