Prediction of effluent total nitrogen and energy consumption in wastewater treatment plants: Bayesian optimization machine learning methods

流出物 超参数 均方误差 技术 贝叶斯优化 环境科学 废水 污水处理 贝叶斯概率 数学 统计 环境工程 制浆造纸工业 机器学习 计算机科学 工程类 电离层 物理 天文
作者
Gang Ye,Jinquan Wan,Zhicheng Deng,Yan Wang,Jian Chen,Bin Zhu,Shiming Ji
出处
期刊:Bioresource Technology [Elsevier]
卷期号:395: 130361-130361 被引量:24
标识
DOI:10.1016/j.biortech.2024.130361
摘要

The control of effluent total nitrogen (TN) and total energy consumption (TEC) is a key issue in managing wastewater treatment plants. In this study, effluent TN and TEC predictive models were established by selecting influent water quality and process control indicators as input features. The prediction performance of machine learning methods under different random seeds was explored, the moving average method was used for data amplification, and the Bayesian algorithm was used for hyperparameter optimization. The results showed that compared with the traditional hyperparameter optimization method for effluent TN prediction, the coefficient of determination (R2) increased by 0.092 and 0.067, reaching 0.725, and the root mean square error (RMSE) decreased by 0.262 and 0.215 mg/L, reaching 1.673 mg/L, respectively, after Bayesian optimization and data amplification. During TEC prediction, R2 increased by 0.068 and 0.042, reaching 0.884, and the RMSE decreased by 232.444 and 197.065 kWh, reaching 1305.829 kWh, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海之恋心完成签到 ,获得积分10
3秒前
科研通AI6应助背后的雪巧采纳,获得10
7秒前
量子星尘发布了新的文献求助10
10秒前
李健的小迷弟应助thchiang采纳,获得10
11秒前
欢呼的雨琴完成签到 ,获得积分10
22秒前
SJW--666完成签到,获得积分0
22秒前
木木完成签到,获得积分10
25秒前
29秒前
thchiang发布了新的文献求助10
33秒前
迅速千愁完成签到 ,获得积分10
37秒前
量子星尘发布了新的文献求助10
38秒前
Nana完成签到 ,获得积分10
39秒前
genius完成签到 ,获得积分10
48秒前
48秒前
thchiang完成签到 ,获得积分10
51秒前
量子星尘发布了新的文献求助10
55秒前
Aixia完成签到 ,获得积分10
56秒前
1分钟前
小叶子完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
ChatGPT完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
安详映阳完成签到 ,获得积分10
1分钟前
张昌炜完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
饱满语风完成签到 ,获得积分10
1分钟前
背后的雪巧完成签到,获得积分10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
long0809完成签到,获得积分10
1分钟前
干净思远完成签到,获得积分10
1分钟前
1分钟前
1分钟前
量子星尘发布了新的文献求助10
2分钟前
luobote完成签到 ,获得积分10
2分钟前
alex12259完成签到 ,获得积分10
2分钟前
Antibody完成签到 ,获得积分10
2分钟前
明朗完成签到 ,获得积分0
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5418544
求助须知:如何正确求助?哪些是违规求助? 4534237
关于积分的说明 14143298
捐赠科研通 4450452
什么是DOI,文献DOI怎么找? 2441265
邀请新用户注册赠送积分活动 1432974
关于科研通互助平台的介绍 1410399