列线图
医学
队列
多元分析
内窥镜检查
镇静剂
内窥镜
内科学
外科
麻醉
作者
Yuqing Yan,Yuzhan Jin,Yuanyuan Cao,Chen Chen,Xiuxiu Zhao,Huaming Xia,Libo Yan,Yanna Si,Jianjun Zou
标识
DOI:10.1016/j.clinre.2023.102277
摘要
Gastric contents may contribute to patients' aspiration during anesthesia. Ultrasound can accurately assess the risk of gastric contents in patients undergoing sedative gastrointestinal endoscopy (GIE) procedures, but its efficiency is limited. Therefore, developing an accurate and efficient model to predict gastric contents in outpatients undergoing elective sedative GIE procedures is greatly desirable. This study retrospectively analyzed 1501 patients undergoing sedative GIE procedures. Gastric contents were observed under direct gastroscopic vision and suctioned through the endoscope. High-risk gastric contents were defined as having solid content or liquid volume > 25 ml and pH < 2.5; otherwise, they were considered low-risk gastric contents. Univariate analysis and multivariate analysis were used to select the independent risk factors to predict high-risk gastric contents. Based on the selected independent risk factors, we assigned values to each independent risk factor and established a novel nomogram. The performance of the nomogram was verified in the testing cohort by the metrics of discrimination, calibration, and clinical usefulness. In addition, an online accessible web calculator was constructed. We found BMI, cerebral infarction, cirrhosis, male, age, diabetes, and gastroesophageal reflux disease were risk factors for gastric contents. The AUROCs were 0.911 and 0.864 in the development and testing cohort, respectively. Moreover, the nomogram showed good calibration ability. Decision curve analysis and Clinical impact curve demonstrated that the predictive nomogram was clinically useful. The website of the nomogram was https://medication.shinyapps.io/dynnomapp/. This study demonstrates that clinical variables can be combined with algorithmic techniques to predict gastric contents in outpatients. Nomogram was constructed from routine variables, and the web calculator had excellent clinical applicability to assess the risk of gastric contents accurately and efficiently in outpatients, assist anesthesiologists in assessment and identify the most appropriate patients for ultrasound.
科研通智能强力驱动
Strongly Powered by AbleSci AI