驻极体
计算机科学
叠加原理
材料科学
软件可移植性
声学
电气工程
工程类
量子力学
物理
复合材料
程序设计语言
作者
Nian Dai,Xiao Guan,Chengyue Lu,Kaijun Zhang,Sumei Xu,Iek Man Lei,Guanglin Li,Qize Zhong,Peng Fang,Junwen Zhong
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-12-05
卷期号:17 (24): 24814-24825
被引量:6
标识
DOI:10.1021/acsnano.3c05507
摘要
Noncontact human-machine interactions (HMIs) provide a hygienic and intelligent approach to communicate between humans and machines. However, current noncontact HMIs are generally hampered by the interaction distance, and they lack the adaptability to environmental interference such as high humidity conditions. Here, we explore a self-powered electret-based noncontact sensor (ENS) with moisture-resisting ability and ultrawide sensing range exceeding 2.5 m. A megascopic air-bubble structure is designed to enhance charge-storage stability and charge-recovery ability of the ENS based on the heterocharge-synergy effect in electrets. Besides, multilayer electret films are introduced to strengthen the electric field by utilizing the electrostatic field superposition effect. Thanks to the above improved performances of the ENS, we demonstrate various noncontact HMI applications in harsh environments, including noncontact appliances, a moving trajectory and accidental fall tracking system, and a real-time machine learning-assisted gesture recognition system with accuracy as high as 99.21%. This research expands the way for noncontact sensor design and may further broaden applications in noncontact HMIs.
科研通智能强力驱动
Strongly Powered by AbleSci AI