ConvFormerSR: Fusing Transformers and Convolutional Neural Networks for Cross-Sensor Remote Sensing Imagery Super-Resolution

遥感 卷积神经网络 计算机科学 人工智能 变压器 图像分辨率 计算机视觉 模式识别(心理学) 地质学 电压 工程类 电气工程
作者
J. Li,Yizhuo Meng,Chongxin Tao,Zhen Zhang,Xining Yang,Zhe Wang,Xi Wang,Linyi Li,Wen Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:6
标识
DOI:10.1109/tgrs.2023.3340043
摘要

Super-resolution (SR) techniques based on deep learning have a pivotal role in improving the spatial resolution of images. However, remote sensing images exhibit ground objects characterized by diverse types, intricate structures, substantial size discrepancies, and noise. Simultaneously, variations in imaging mechanisms, imaging time, and atmospheric conditions among different sensors result in disparities in image quality and surface radiation. These factors collectively pose challenges for existing SR models to fulfill the demands of the domain. To address these challenges, we propose a novel cross-sensor SR framework (ConvFormerSR) that integrates transformers and convolutional neural networks (CNNs), catering to the heterogeneous and complex ground features in remote sensing images. Our model leverages an enhanced transformer structure to capture long-range dependencies and high-order spatial interactions, while CNNs facilitate local detail extraction and enhance model robustness. Furthermore, as a bridge between the two branches, a feature fusion module (FFM) is devised to efficiently fuse global and local information at various levels. Additionally, we introduce a spectral loss based on the remote sensing ratio index to mitigate domain shift induced by cross-sensors. The proposed method is validated on two datasets and compared against existing state-of-the-art SR models. The results show that our proposed method can effectively improve the spatial resolution of Landsat-8 images, and the model performance is significantly better than other methods. Furthermore, the SR results exhibit satisfactory spectral consistency with high-resolution (HR) images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MOMO完成签到,获得积分10
1秒前
zlz完成签到,获得积分10
1秒前
爆米花应助默幻弦采纳,获得10
2秒前
2秒前
务实的手套完成签到,获得积分10
3秒前
慕青应助pyh采纳,获得10
3秒前
6秒前
汝桢发布了新的文献求助10
7秒前
7秒前
7秒前
忧郁的灵枫完成签到,获得积分20
9秒前
9秒前
迟迟完成签到 ,获得积分10
11秒前
Orange应助Rita采纳,获得10
12秒前
科研通AI6应助默幻弦采纳,获得10
13秒前
酷炫的大碗完成签到,获得积分10
14秒前
bu2bujiaozsy发布了新的文献求助10
15秒前
15秒前
Manphie应助满意的世界采纳,获得10
17秒前
尛鱻发布了新的文献求助10
17秒前
小蘑菇应助杀死周一采纳,获得10
18秒前
phraly完成签到,获得积分10
18秒前
帅气的杰瑞完成签到,获得积分10
18秒前
zhaojinming完成签到,获得积分20
18秒前
19秒前
思源应助汝桢采纳,获得10
20秒前
Yygz314完成签到,获得积分10
20秒前
义气幼珊发布了新的文献求助10
20秒前
共享精神应助shw采纳,获得30
20秒前
20秒前
周倩完成签到,获得积分10
21秒前
22秒前
壮观的哈密瓜完成签到,获得积分10
22秒前
加油小白菜完成签到,获得积分10
23秒前
25秒前
Akihi发布了新的文献求助20
26秒前
FashionBoy应助义气香芦采纳,获得10
26秒前
27秒前
尊敬吐司发布了新的文献求助10
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
量子光学理论与实验技术 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5328673
求助须知:如何正确求助?哪些是违规求助? 4468375
关于积分的说明 13904790
捐赠科研通 4361352
什么是DOI,文献DOI怎么找? 2395710
邀请新用户注册赠送积分活动 1389235
关于科研通互助平台的介绍 1360022