ConvFormerSR: Fusing Transformers and Convolutional Neural Networks for Cross-Sensor Remote Sensing Imagery Super-Resolution

遥感 卷积神经网络 计算机科学 人工智能 变压器 图像分辨率 计算机视觉 模式识别(心理学) 地质学 电压 工程类 电气工程
作者
J. Li,Yizhuo Meng,Chongxin Tao,Zhen Zhang,Xining Yang,Zhe Wang,Xi Wang,Linyi Li,Wen Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:6
标识
DOI:10.1109/tgrs.2023.3340043
摘要

Super-resolution (SR) techniques based on deep learning have a pivotal role in improving the spatial resolution of images. However, remote sensing images exhibit ground objects characterized by diverse types, intricate structures, substantial size discrepancies, and noise. Simultaneously, variations in imaging mechanisms, imaging time, and atmospheric conditions among different sensors result in disparities in image quality and surface radiation. These factors collectively pose challenges for existing SR models to fulfill the demands of the domain. To address these challenges, we propose a novel cross-sensor SR framework (ConvFormerSR) that integrates transformers and convolutional neural networks (CNNs), catering to the heterogeneous and complex ground features in remote sensing images. Our model leverages an enhanced transformer structure to capture long-range dependencies and high-order spatial interactions, while CNNs facilitate local detail extraction and enhance model robustness. Furthermore, as a bridge between the two branches, a feature fusion module (FFM) is devised to efficiently fuse global and local information at various levels. Additionally, we introduce a spectral loss based on the remote sensing ratio index to mitigate domain shift induced by cross-sensors. The proposed method is validated on two datasets and compared against existing state-of-the-art SR models. The results show that our proposed method can effectively improve the spatial resolution of Landsat-8 images, and the model performance is significantly better than other methods. Furthermore, the SR results exhibit satisfactory spectral consistency with high-resolution (HR) images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
iiilll完成签到,获得积分10
刚刚
Rr完成签到,获得积分10
刚刚
MchemG应助725采纳,获得10
刚刚
直率小霜完成签到,获得积分10
1秒前
1秒前
jiaxzh关注了科研通微信公众号
2秒前
s615完成签到,获得积分0
4秒前
珈小羽完成签到,获得积分10
4秒前
4秒前
XXU发布了新的文献求助10
4秒前
5秒前
谷歌狗完成签到,获得积分10
6秒前
CipherSage应助满眼星辰采纳,获得10
6秒前
鲤鱼发布了新的文献求助10
8秒前
tomorrow9完成签到 ,获得积分10
8秒前
无语的大门完成签到,获得积分10
8秒前
9秒前
10秒前
万物安生发布了新的文献求助10
11秒前
诗图发布了新的文献求助10
12秒前
哈哈哈完成签到,获得积分10
13秒前
雪山飞龙发布了新的文献求助10
13秒前
XXU完成签到,获得积分10
13秒前
14秒前
14秒前
15秒前
hope_sun完成签到 ,获得积分10
16秒前
Owen应助任性的忆南采纳,获得10
16秒前
16秒前
17秒前
yznfly应助王kk采纳,获得20
18秒前
jinggaier完成签到 ,获得积分10
19秒前
zrx关注了科研通微信公众号
20秒前
20秒前
YC发布了新的文献求助10
20秒前
涨秋池发布了新的文献求助10
21秒前
jiaxzh发布了新的文献求助30
21秒前
21秒前
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966448
求助须知:如何正确求助?哪些是违规求助? 3511917
关于积分的说明 11160753
捐赠科研通 3246652
什么是DOI,文献DOI怎么找? 1793478
邀请新用户注册赠送积分活动 874465
科研通“疑难数据库(出版商)”最低求助积分说明 804403