ConvFormerSR: Fusing Transformers and Convolutional Neural Networks for Cross-Sensor Remote Sensing Imagery Super-Resolution

遥感 卷积神经网络 计算机科学 人工智能 变压器 图像分辨率 计算机视觉 模式识别(心理学) 地质学 电压 工程类 电气工程
作者
J. Li,Yizhuo Meng,Chongxin Tao,Zhen Zhang,Xining Yang,Zhe Wang,Xi Wang,Linyi Li,Wen Zhang
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:2
标识
DOI:10.1109/tgrs.2023.3340043
摘要

Super-resolution (SR) techniques based on deep learning have a pivotal role in improving the spatial resolution of images. However, remote sensing images exhibit ground objects characterized by diverse types, intricate structures, substantial size discrepancies, and noise. Simultaneously, variations in imaging mechanisms, imaging time, and atmospheric conditions among different sensors result in disparities in image quality and surface radiation. These factors collectively pose challenges for existing SR models to fulfill the demands of the domain. To address these challenges, we propose a novel cross-sensor SR framework (ConvFormerSR) that integrates transformers and convolutional neural networks (CNNs), catering to the heterogeneous and complex ground features in remote sensing images. Our model leverages an enhanced transformer structure to capture long-range dependencies and high-order spatial interactions, while CNNs facilitate local detail extraction and enhance model robustness. Furthermore, as a bridge between the two branches, a feature fusion module (FFM) is devised to efficiently fuse global and local information at various levels. Additionally, we introduce a spectral loss based on the remote sensing ratio index to mitigate domain shift induced by cross-sensors. The proposed method is validated on two datasets and compared against existing state-of-the-art SR models. The results show that our proposed method can effectively improve the spatial resolution of Landsat-8 images, and the model performance is significantly better than other methods. Furthermore, the SR results exhibit satisfactory spectral consistency with high-resolution (HR) images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助222采纳,获得10
1秒前
1秒前
SciGPT应助feifan123采纳,获得10
1秒前
2秒前
ymlyang发布了新的文献求助10
2秒前
2秒前
香蕉完成签到 ,获得积分10
2秒前
8R60d8应助aliupeifang采纳,获得10
3秒前
3秒前
3秒前
4秒前
王欣瑶完成签到 ,获得积分10
4秒前
CipherSage应助体贴的冥王星采纳,获得10
4秒前
林志文发布了新的文献求助10
4秒前
5秒前
酷波er应助科研通管家采纳,获得10
5秒前
lsq725发布了新的文献求助10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
打打应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
5秒前
从容芮应助科研通管家采纳,获得30
5秒前
汉堡包应助科研通管家采纳,获得10
5秒前
不配.应助科研通管家采纳,获得10
5秒前
思源应助科研通管家采纳,获得10
5秒前
爆米花应助科研通管家采纳,获得10
5秒前
pluto应助科研通管家采纳,获得10
5秒前
大模型应助科研通管家采纳,获得10
5秒前
5秒前
大个应助科研通管家采纳,获得10
6秒前
Allonz发布了新的文献求助10
6秒前
章鱼发布了新的文献求助10
6秒前
bkagyin应助阿腾采纳,获得10
8秒前
8秒前
Orange应助天真的丹亦采纳,获得10
8秒前
Re_完成签到,获得积分10
9秒前
9秒前
Mellet发布了新的文献求助10
9秒前
10秒前
10秒前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
宽禁带半导体紫外光电探测器 300
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141967
求助须知:如何正确求助?哪些是违规求助? 2792975
关于积分的说明 7804827
捐赠科研通 2449305
什么是DOI,文献DOI怎么找? 1303150
科研通“疑难数据库(出版商)”最低求助积分说明 626807
版权声明 601291