The risk and prognostic factors for lung metastases in oral squamous cell carcinoma: A population-based analysis of the SEER database

医学 肿瘤科 基底细胞 内科学 人口 肺鳞状细胞癌 肺癌 环境卫生
作者
Dan Yu,Rong Guo,Lei Zhu
出处
期刊:Journal of Stomatology, Oral and Maxillofacial Surgery [Elsevier BV]
卷期号:125 (3): 101713-101713 被引量:2
标识
DOI:10.1016/j.jormas.2023.101713
摘要

This study aimed to describe the risk and prognostic factors associated with lung metastases among oral squamous cell carcinoma (OSCC) patients, further to establish a nomogram model to predict the risk of lung metastases. Data on OSCC patients was retrieved from the Surveillance, Epidemiology, and End Results (SEER) database between 2010 and 2019. Univariable and multivariable logistic and Cox regression models were used to explore the risk factors for developing lung metastases, further the predictive nomogram was constructed. 19, 606 OSCC patients meets the inclusion criteria and were enrolled into this study. Of which, 221 cases have lung metastases at initial diagnosis. Multivariate logistic regression analysis indicated race, T stage, N stage as well as bone metastases, liver metastases were independently associated the development of lung metastases. The diagnostic nomogram for developing lung metastases was constructed, the c-index for this model was 0.830 (0.804-0.856). Both the ROC curve and calibration curves revealed accurate predictability. DCA curve displayed the established nomogram model had good clinical applicability for the prediction of lung metastases. The median OS of OSCC patients with lung metastases was 7.0 months (6.0-9.0), and the 6-months, 12-months, 24-month OS rates were 54.5%, 30.9%, 17.7%, respectively. The multivariate Cox analysis showed that chemotherapy and liver metastases were independently associated with both OS and CSS. This study determined the risk and prognostic factors for lung metastases among OSCC patients and the established nomogram had good calibration and discrimination for predicting lung metastases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
海丽完成签到 ,获得积分10
1秒前
Y_完成签到 ,获得积分10
1秒前
2秒前
12305014077完成签到 ,获得积分10
2秒前
宝玉发布了新的文献求助10
3秒前
知性的雅彤完成签到,获得积分10
3秒前
hzh完成签到 ,获得积分20
4秒前
hitzwd完成签到,获得积分10
4秒前
酒爱泡芙完成签到,获得积分10
5秒前
Mp4完成签到 ,获得积分10
5秒前
congyjs完成签到,获得积分20
6秒前
姜禾晚烟发布了新的文献求助10
7秒前
小冰糖完成签到 ,获得积分10
7秒前
hyt完成签到 ,获得积分10
7秒前
7秒前
思源应助宝玉采纳,获得10
7秒前
幽默的醉冬完成签到,获得积分10
7秒前
CYYDNDB完成签到 ,获得积分10
7秒前
害羞破茧完成签到,获得积分10
7秒前
青菜完成签到,获得积分10
8秒前
JOJO完成签到,获得积分10
8秒前
啦啦啦啦完成签到 ,获得积分10
9秒前
阳光的皮皮虾完成签到,获得积分10
9秒前
Grant完成签到 ,获得积分10
9秒前
10秒前
10秒前
lian完成签到,获得积分10
12秒前
王彬发布了新的文献求助10
13秒前
在水一方应助啦啦啦啦啦采纳,获得10
13秒前
hao完成签到,获得积分0
14秒前
积极烧鹅完成签到,获得积分10
14秒前
落雪完成签到 ,获得积分10
17秒前
白竺关注了科研通微信公众号
18秒前
贪玩钢铁侠完成签到,获得积分10
19秒前
sunianjinshi完成签到,获得积分10
20秒前
清秀的冰淇淋完成签到,获得积分10
20秒前
ylf发布了新的文献求助10
21秒前
23秒前
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Nach dem Geist? 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5044838
求助须知:如何正确求助?哪些是违规求助? 4274315
关于积分的说明 13323674
捐赠科研通 4088088
什么是DOI,文献DOI怎么找? 2236731
邀请新用户注册赠送积分活动 1244114
关于科研通互助平台的介绍 1172128