A review on semi-supervised learning for EEG-based emotion recognition

人气 计算机科学 背景(考古学) 脑电图 人工智能 领域(数学) 深度学习 机器学习 心理学 社会心理学 数学 生物 精神科 古生物学 纯数学
作者
Sen Qiu,Yongtao Chen,Yulin Yang,Pengfei Wang,Zhelong Wang,Hongyu Zhao,Yuntong Kang,Ruicheng Nie
出处
期刊:Information Fusion [Elsevier]
卷期号:104: 102190-102190 被引量:2
标识
DOI:10.1016/j.inffus.2023.102190
摘要

Semisupervised learning holds significant academic and practical importance in the realm of EEG-based emotion recognition. Currently, a multitude of research endeavors are dedicated to addressing the challenge of emotion recognition, especially in light of the growing popularity of deep learning. Within this context, semisupervised learning has emerged as an innovative and promising methodological trend. This article seeks to contribute a comprehensive review that captures the research landscape, distills essential technologies, and projects the trajectory of semisupervised learning for EEG-based emotion recognition. The review encompasses various critical aspects. Firstly, it introduces EEG-based emotion recognition and underscores the pivotal role of semisupervised learning in enhancing its performance. Secondly, the semisupervised learning framework is analyzed, drawing comparisons with conventional methodologies to highlight its unique advantages. Thirdly, the article delves into the intricacies of the emotion recognition challenge, shedding light on how semisupervised learning can effectively address these complexities. Furthermore, the review synthesizes, categorizes, and provides exemplifications of representative semisupervised learning approaches that are specifically tailored for EEG-based emotion recognition. Finally, the methodological strengths of semisupervised learning are elucidated, accompanied by a discussion of the encountered challenges. The article concludes by projecting the future developmental trajectory of semisupervised learning within the domain of EEG-based emotion recognition, underlining its potential for inspiring innovation and advancements in this field.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助ZAO采纳,获得10
刚刚
爆米花应助LWJ采纳,获得30
1秒前
阿巴阿巴完成签到,获得积分20
2秒前
轻松的采白完成签到,获得积分20
3秒前
陈小子爱梅关注了科研通微信公众号
3秒前
霖霖发布了新的文献求助10
4秒前
噜噜完成签到,获得积分10
4秒前
wanci应助azheng采纳,获得10
4秒前
5秒前
5秒前
6秒前
七月流火应助JJQ采纳,获得100
7秒前
8秒前
9秒前
10秒前
我要发SCI发布了新的文献求助10
10秒前
cctv18给Castleofglass123的求助进行了留言
10秒前
18922406869完成签到,获得积分20
11秒前
11秒前
才疏学浅发布了新的文献求助10
11秒前
starleo发布了新的文献求助10
12秒前
12秒前
开朗寇发布了新的文献求助10
13秒前
研友_VZG7GZ应助科研通管家采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
852应助科研通管家采纳,获得10
14秒前
思源应助科研通管家采纳,获得10
14秒前
iNk应助科研通管家采纳,获得20
14秒前
CipherSage应助科研通管家采纳,获得10
14秒前
慕青应助科研通管家采纳,获得10
14秒前
SciGPT应助科研通管家采纳,获得10
14秒前
14秒前
14秒前
14秒前
14秒前
caitSith完成签到,获得积分10
15秒前
nnnnnn发布了新的文献求助10
16秒前
17秒前
白鲜香精发布了新的文献求助10
17秒前
忧伤的从阳关注了科研通微信公众号
17秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244023
求助须知:如何正确求助?哪些是违规求助? 2887881
关于积分的说明 8250101
捐赠科研通 2556472
什么是DOI,文献DOI怎么找? 1384639
科研通“疑难数据库(出版商)”最低求助积分说明 649901
邀请新用户注册赠送积分活动 625972