Dynamic parameter identification based on improved particle swarm optimization and comprehensive excitation trajectory for 6R robotic arm

粒子群优化 控制理论(社会学) 初始化 计算机科学 鉴定(生物学) 弹道 系统标识 估计理论 数学优化 算法 数学 人工智能 数据建模 植物 物理 控制(管理) 天文 数据库 生物 程序设计语言
作者
Feifei Zhong,Shuai Liu,Zhenyu Lu,Lingyan Hu,Yangyang Han,Yusong Xiao,Xinrui Zhang
出处
期刊:Industrial Robot-an International Journal [Emerald (MCB UP)]
卷期号:51 (1): 148-166 被引量:3
标识
DOI:10.1108/ir-07-2023-0157
摘要

Purpose Robotic arms’ interactions with the external environment are growing more intricate, demanding higher control precision. This study aims to enhance control precision by establishing a dynamic model through the identification of the dynamic parameters of a self-designed robotic arm. Design/methodology/approach This study proposes an improved particle swarm optimization (IPSO) method for parameter identification, which comprehensively improves particle initialization diversity, dynamic adjustment of inertia weight, dynamic adjustment of local and global learning factors and global search capabilities. To reduce the number of particles and improve identification accuracy, a step-by-step dynamic parameter identification method was also proposed. Simultaneously, to fully unleash the dynamic characteristics of a robotic arm, and satisfy boundary conditions, a combination of high-order differentiable natural exponential functions and traditional Fourier series is used to develop an excitation trajectory. Finally, an arbitrary verification trajectory was planned using the IPSO to verify the accuracy of the dynamical parameter identification. Findings Experiments conducted on a self-designed robotic arm validate the proposed parameter identification method. By comparing it with IPSO1, IPSO2, IPSOd and least-square algorithms using the criteria of torque error and root mean square for each joint, the superiority of the IPSO algorithm in parameter identification becomes evident. In this case, the dynamic parameter results of each link are significantly improved. Originality/value A new parameter identification model was proposed and validated. Based on the experimental results, the stability of the identification results was improved, providing more accurate parameter identification for further applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
加菲丰丰应助小栗子采纳,获得30
刚刚
科研牛马完成签到,获得积分10
1秒前
云湮完成签到,获得积分10
2秒前
西川完成签到 ,获得积分10
2秒前
4秒前
4秒前
zsl0207完成签到,获得积分10
6秒前
paio完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
lmy发布了新的文献求助10
9秒前
hyhy完成签到,获得积分10
9秒前
妖妖完成签到,获得积分10
11秒前
11秒前
orixero应助rougelike采纳,获得10
11秒前
哈扎尔完成签到 ,获得积分10
11秒前
abc发布了新的文献求助10
12秒前
12秒前
hyhy发布了新的文献求助10
13秒前
ll应助nihao采纳,获得10
13秒前
田様应助我爱科研采纳,获得10
13秒前
清秀幼丝发布了新的文献求助30
13秒前
Wzx完成签到 ,获得积分10
14秒前
wykuner应助Mississippiecho采纳,获得10
15秒前
lmy完成签到,获得积分10
16秒前
冷傲的道罡完成签到,获得积分10
16秒前
16秒前
善学以致用应助朴实凝雁采纳,获得10
16秒前
瓜瓜发布了新的文献求助10
18秒前
丘比特应助你怎么那么美采纳,获得10
20秒前
灵溪完成签到 ,获得积分10
21秒前
21秒前
22秒前
23秒前
糊涂的芷天完成签到,获得积分20
24秒前
子车茗应助ninomae采纳,获得30
24秒前
25秒前
25秒前
Cindy发布了新的文献求助10
26秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Zeitschrift für Orient-Archäologie 500
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The Politics of Electricity Regulation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3340183
求助须知:如何正确求助?哪些是违规求助? 2968239
关于积分的说明 8632813
捐赠科研通 2647759
什么是DOI,文献DOI怎么找? 1449804
科研通“疑难数据库(出版商)”最低求助积分说明 671543
邀请新用户注册赠送积分活动 660544