Vehicle Acoustic and Seismic Synchronization Signal Classification Using Long-Term Features

计算机科学 特征提取 分类器(UML) 模式识别(心理学) 人工智能 时域 特征(语言学) 频域 语音识别 计算机视觉 哲学 语言学
作者
Lianwen Sun,Zebin Zhang,Hongying Tang,Huawei Liu,Baoqing Li
出处
期刊:IEEE Sensors Journal [Institute of Electrical and Electronics Engineers]
卷期号:23 (10): 10871-10878 被引量:3
标识
DOI:10.1109/jsen.2023.3263572
摘要

Field-vehicle-type recognition plays an essential role in border protection tasks. Acoustic and seismic sensors can effectively collect the signal of field vehicle targets in real-time. Most vehicle temporal signal classification algorithms are based on extracting and identifying handcrafted features. These algorithms focus on the signal’s frequency-domain characteristics and despise the signal’s time-domain characteristics. To extract appropriate features, this article proposes a long-term correlation feature network (LTCFN) to perform field vehicle acoustic and seismic signal classification. The model includes AlexNet-type feature extractor and an overall classifier implemented by a long-short term memory (LSTM) network. We present an intraframe network and fusion method for extracting feature vector from signals. Meanwhile, an interframe classifier is proposed first for analyzing the time correlation of the feature map and overall classification. The experiments illustrate that the LTCFN has excellent recognition performance and anti-noise ability. The classification accuracy of the LTCFN can be increased to 96%. This article also provides a new idea for ground target classification through interframe feature measurement.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ured发布了新的文献求助20
1秒前
科研通AI2S应助貌美小张采纳,获得10
2秒前
汉堡包应助多情的安阳采纳,获得10
3秒前
香蕉觅云应助123采纳,获得10
3秒前
ning完成签到,获得积分10
4秒前
swzzaf发布了新的文献求助10
4秒前
穆紫应助LIUYI采纳,获得10
4秒前
6秒前
打打应助山人自有喵喵采纳,获得10
9秒前
冰淇淋完成签到,获得积分10
10秒前
11秒前
派派发布了新的文献求助10
12秒前
熊大完成签到,获得积分10
13秒前
汉堡包应助陈先生de猫采纳,获得10
14秒前
几酝完成签到 ,获得积分10
14秒前
15秒前
17秒前
17秒前
大模型应助一叶知秋采纳,获得10
18秒前
亦久完成签到 ,获得积分10
20秒前
21秒前
21秒前
阿乾发布了新的文献求助10
22秒前
22秒前
科研通AI2S应助多情的安阳采纳,获得10
22秒前
乐乐应助小万同学采纳,获得10
25秒前
26秒前
脑洞疼应助aiyu采纳,获得10
27秒前
哈鲁发布了新的文献求助10
28秒前
kbg990818完成签到 ,获得积分10
29秒前
29秒前
29秒前
30秒前
31秒前
33秒前
火火发布了新的文献求助40
33秒前
鳗鱼灵安完成签到,获得积分10
33秒前
34秒前
哈鲁完成签到,获得积分10
34秒前
35秒前
高分求助中
Sustainability in Tides Chemistry 1500
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Threaded Harmony: A Sustainable Approach to Fashion 799
Livre et militantisme : La Cité éditeur 1958-1967 500
Retention of title in secured transactions law from a creditor's perspective: A comparative analysis of selected (non-)functional approaches 500
"Sixth plenary session of the Eighth Central Committee of the Communist Party of China" 400
New China Forges Ahead: Important Documents of the Third Session of the First National Committee of the Chinese People's Political Consultative Conference 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3056175
求助须知:如何正确求助?哪些是违规求助? 2712737
关于积分的说明 7432964
捐赠科研通 2357715
什么是DOI,文献DOI怎么找? 1249040
科研通“疑难数据库(出版商)”最低求助积分说明 606843
版权声明 596195